Search results for: malicious images detector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2877

Search results for: malicious images detector

2427 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor

Authors: B. L. Gadiga

Abstract:

This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.

Keywords: vegetation, NDVI, SPOT-vegetation, ecology, degradation

Procedia PDF Downloads 221
2426 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 183
2425 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
2424 Using Digitally Reconstructed Radiographs from Magnetic Resonance Images to Localize Pelvic Lymph Nodes on 2D X-Ray Simulator-Based Brachytherapy Treatment Planning

Authors: Mohammad Ali Oghabian, Reza Reiazi, Esmaeel Parsai, Mehdi Aghili, Ramin Jaberi

Abstract:

In this project a new procedure has been introduced for utilizing digitally reconstructed radiograph from MRI images in Brachytherapy treatment planning. This procedure enables us to localize the tumor volume and delineate the extent of critical structures in vicinity of tumor volume. The aim of this project was to improve the accuracy of dose delivered to targets of interest in 2D treatment planning system.

Keywords: brachytherapy, cervix, digitally reconstructed radiographs, lymph node

Procedia PDF Downloads 530
2423 Fusion of MOLA-based DEMs and HiRISE Images for Large-Scale Mars Mapping

Authors: Ahmed F. Elaksher, Islam Omar

Abstract:

In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were then digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. Different transformation models, including the affine and projective transformation models, were used with different sets and distributions of tie points. Additionally, we evaluated the use of the MOLA elevations in co-registering the MOLA and HiRISE datasets. The planimetric RMSEs achieved for each model are reported. Results suggested the use of 3D-2D transformation models.

Keywords: photogrammetry, Mars, MOLA, HiRISE

Procedia PDF Downloads 77
2422 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 157
2421 Characterization of Kopff Crater Using Remote Sensing Data

Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki

Abstract:

Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.

Keywords: crater, mineralogy, moon, radar observations

Procedia PDF Downloads 160
2420 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 228
2419 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kumar Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform

Procedia PDF Downloads 115
2418 A Method to Estimate Wheat Yield Using Landsat Data

Authors: Zama Mahmood

Abstract:

The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.

Keywords: landsat, NDVI, remote sensing, satellite images, yield

Procedia PDF Downloads 335
2417 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 270
2416 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
2415 Improvement of Cross Range Resolution in Through Wall Radar Imaging Using Bilateral Backprojection

Authors: Rashmi Yadawad, Disha Narayanan, Ravi Gautam

Abstract:

Through Wall Radar Imaging is gaining increasing importance now a days in the field of Defense and one of the most important criteria that forms the basis for the image quality obtained is the Cross-Range resolution of the image. In this research paper, the Bilateral Back projection algorithm has been implemented for Through Wall Radar Imaging. The sole purpose is to enhance the resolution in the cross range direction of the obtained Back projection image. Synthetic Data is generated for two targets which are placed at various locations in a room of dimensions 8 m by 6m. Two algorithms namely, simple back projection and Bilateral Back projection have been implemented, images are obtained and the obtained images are compared. Numerical simulations have been coded in MATLAB and experimental results of the two algorithms have been shown. Based on the comparison between the two images, it can be clearly seen that the ringing effect and chess board effect have been heavily reduced in the bilaterally back projected image and hence promising results are obtained giving a relatively sharper image with relatively well defined edges.

Keywords: through wall radar imaging, bilateral back projection, cross range resolution, synthetic data

Procedia PDF Downloads 347
2414 Error Analysis of Wavelet-Based Image Steganograhy Scheme

Authors: Geeta Kasana, Kulbir Singh, Satvinder Singh

Abstract:

In this paper, a steganographic scheme for digital images using Integer Wavelet Transform (IWT) is proposed. The cover image is decomposed into wavelet sub bands using IWT. Each of the subband is divided into blocks of equal size and secret data is embedded into the largest and smallest pixel values of each block of the subband. Visual quality of stego images is acceptable as PSNR between cover image and stego is above 40 dB, imperceptibility is maintained. Experimental results show better tradeoff between capacity and visual perceptivity compared to the existing algorithms. Maximum possible error analysis is evaluated for each of the wavelet subbands of an image.

Keywords: DWT, IWT, MSE, PSNR

Procedia PDF Downloads 504
2413 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method

Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption

Procedia PDF Downloads 518
2412 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 503
2411 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor

Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun

Abstract:

An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.

Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor

Procedia PDF Downloads 381
2410 Moving Images and Re-Articulations of Self-Identity: Young People's Experiences of Viewing Representations Disability in Films

Authors: Alison Wilde, Stephen Millett

Abstract:

The cultural value of disabled people has largely been overlooked within forms of media and cultural analysis until the 1980s, when disabled people and disability studies highlighted the cultural misrecognition of disabled people and called for improved forms of cultural recognition and representation. Despite an increase in cultural analysis of representations of disabled people, much has been assumed about how images are read, and little work has been done on the value attributed to disabled people by media audiences and the viewing interests and encounters of film audiences. In particular, there has been little work on film reception, or on the way that young people interpret images of disability. We set out to understand some of the ways that young people read disability imagery, by showing small groups of young people different types of film featuring impairments, chosen from three different eras in film. These were Freaks, Rear Window (remake), and Finding Nemo. The discussions after these films allowed them to explore their own experiences of disability alongside the evolution of cultural representations; in so doing they discussed significant themes of cultural value and reflected on their own identities, e.g. in/dependency, autonomy, and competency and the ways these intersected with self-identity, and attitudes to disabled people.

Keywords: film, audience, identity, disability

Procedia PDF Downloads 419
2409 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria

Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli

Abstract:

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.

Keywords: remote sensing, boutaleb, diversity, forest

Procedia PDF Downloads 560
2408 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 426
2407 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
2406 Liver and Liver Lesion Segmentation From Abdominal CT Scans

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm

Keywords: anisotropic diffusion filter, CT images, hepatic lesion segmentation, Liver segmentation, morphological filter, the watershed algorithm

Procedia PDF Downloads 451
2405 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 129
2404 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: image detection, forgery image, copy-paste, attack detection

Procedia PDF Downloads 338
2403 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 247
2402 Medical Image Compression by Region of Interest Based on DT-CWT Using Run-length Coding and Huffman Coding

Authors: Ali Seddiki, Mohamed Djebbouri, Driss Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. In some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to quality purpose compression in the region of interest of scintigraphic images based on dual tree complex wavelet transform (DT-CWT) using Run-Length coding (RLE) and Huffman coding (HC).

Keywords: DT-CWT, region of interest, run length coding, Scintigraphic images

Procedia PDF Downloads 282
2401 Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges

Authors: Janet Wing-Chong Wai, Alex Chiu-Wing Lee, Hailey Hoi-Ching Tsang, Jeffrey Chiu, Kwok-Wing Tang

Abstract:

Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation.

Keywords: MRI, breast, clinical, cancer

Procedia PDF Downloads 241
2400 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
2399 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8

Authors: Aysun Sezer

Abstract:

Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.

Keywords: YOLOv8, object detection, humerus, scapula, IRM

Procedia PDF Downloads 66
2398 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment

Authors: Neda Orak, Mostafa Zarei

Abstract:

Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.

Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park

Procedia PDF Downloads 293