Search results for: inverse emulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 668

Search results for: inverse emulsion

218 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation

Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz

Abstract:

Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.

Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours

Procedia PDF Downloads 339
217 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 430
216 Earnings Volatility and Earnings Predictability

Authors: Yosra Ben Mhamed

Abstract:

Most previous research that investigates the importance of earnings volatility for a firm’s value has focused on the effects of earnings volatility on the cost of capital. Many study illustrate that earnings volatility can reduce the firm’s value by enhancing the cost of capital. However, a few recent studies directly examine the relation between earnings volatility and subsequent earnings levels. In our study, we further explore the role of volatility in forecasting. Our study makes two primary contributions to the literature. First, taking into account the level of current firm’s performance, we provide causal theory to the link between volatility and earnings predictability. Nevertheless, previous studies testing the linearity of this relationship have not mentioned any underlying theory. Secondly, our study contributes to the vast body of fundamental analysis research that identifies a set of variables that improve valuation, by showing that earnings volatility affects the estimation of future earnings. Projections of earnings are used by valuation research and practice to derive estimates of firm value. Since we want to examine the impact of volatility on earnings predictability, we sort the sample into three portfolios according to the level of their earnings volatility in ascending order. For each quintile, we present the predictability coefficient. In a second test, each of these portfolios is, then, sorted into three further quintiles based on their level of current earnings. These yield nine quintiles. So we can observe whether volatility strongly predicts decreases on earnings predictability only for highest quintile of earnings. In general, we find that earnings volatility has an inverse relationship with earnings predictability. Our results also show that the sensibility of earnings predictability to ex-ante volatility is more pronounced among profitability firms. The findings are most consistent with overinvestment and persistence explanations.

Keywords: earnings volatility, earnings predictability, earnings persistence, current profitability

Procedia PDF Downloads 406
215 Polymer Patterning by Dip Pen Nanolithography

Authors: Ayse Cagil Kandemir, Derya Erdem, Markus Niederberger, Ralph Spolenak

Abstract:

Dip Pen nanolithography (DPN), which is a tip based method, serves a novel approach to produce nano and micro-scaled patterns due to its high resolution and pattern flexibility. It is introduced as a new constructive scanning probe lithography (SPL) technique. DPN delivers materials in the form of an ink by using the tip of a cantilever as pen and substrate as paper in order to form surface architectures. First studies rely on delivery of small organic molecules on gold substrate in ambient conditions. As time passes different inks such as; polymers, colloidal particles, oligonucleotides, metallic salts were examined on a variety of surfaces. Discovery of DPN also enabled patterning with multiple inks by using multiple cantilevers for the first time in SPL history. Specifically, polymer inks, which constitute a flexible matrix for various materials, can have a potential in MEMS, NEMS and drug delivery applications. In our study, it is aimed to construct polymer patterns using DPN by studying wetting behavior of polymer on semiconductor, metal and polymer surfaces. The optimum viscosity range of polymer and effect of environmental conditions such as humidity and temperature are examined. It is observed that there is an inverse relation with ink viscosity and depletion time. This study also yields the optimal writing conditions to produce consistent patterns with DPN. It is shown that written dot sizes increase with dwell time, indicating that the examined writing conditions yield repeatable patterns.

Keywords: dip pen nanolithography, polymer, surface patterning, surface science

Procedia PDF Downloads 375
214 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study

Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.

Abstract:

Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG

Keywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation

Procedia PDF Downloads 127
213 Compassion Fade: Effects of Mass Perception and Intertemporal Choice on Non-Volunteering Behavior

Authors: Mariel L. Alonzo, Patricia Mae T. Chi, Juliana Patrice P. Mayormita, Sanjana A. Sorio

Abstract:

Compassion fade proposes an inverse relationship between the magnitude of stimuli to elicited compassion. This phenomenon is viewed within a framework that integrates a 3-Act Compassion structure with Latané and Darley’s Unresponsive Bystander Model and Prospect Theory of Decision-making under risk. Students (N=211) from Ateneo de Davao were sampled to examine the effects of mass perception (increasing number of needy persons) and intertemporal choice (soon versus later) on volunteering behavior. Collegiate classes in their natural setting were randomly assigned to five different treatment groups and were presented with audiovisual presentations featuring an increasing number of needy persons. The students were deceived to believe that two hypothetical feeding programs for Marawi refugees, taking place in 1 month and 6 months, were in need of volunteers for its preparatory phase. Results show a statistically significant (p=0.000; p=0.013) non-linear trend consistently for both feeding programs. There was a decrease in volunteered time means as identifiable victims increased from 0-47 and an increase as it progressed towards 267 non-identifiable victims. Highest interest was expressed for the 0 needy people shown and least for 47. The 0 hours volunteered was consistently the mode and median in all treatments. There was no statistically significant temporal discounting effect.

Keywords: compassion, group perception, identifiable victim, intertemporal choice, prosocial behavior, unresponsive bystander

Procedia PDF Downloads 184
212 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 450
211 Correlation between Overweightness and the Extent of Coronary Atherosclerosis among the South Caspian Population

Authors: Maryam Nabati, Mahmood Moosazadeh, Ehsan Soroosh, Hanieh Shiraj, Mahnaneh Gholami, Ali Ghaemian

Abstract:

Background: Reported effects of obesity on the extent of angiographic coronary artery disease(CAD) have beeninconsistent. The present study aimed to investigate the relationships between the indices of obesity and otheranthropometric markers with the extent of CAD. Methods: This study was conducted on 1008 consecutive patients who underwent coronary angiography. Bodymass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) wereseparately calculated for each patient. Extent, severity, and complexity of CAD were determined by the Gensini andSYNTAX scores. Results: According to the results, there was a significant inverse correlation between the SYNTAX score with BMI(r = − 0.110; P < 0.001), WC (r = − 0.074; P = 0.018), and WHtR (r = − 0.089; P = 0.005). Furthermore, a significant inversecorrelation was observed between the Gensini score with BMI (r = − 0.090; P = 0.004) and WHtR (r = − 0.065; P =0.041). However, the results of multivariate linear regression analysis did not show any association between theSYNTAX and Gensini scores with the indices of obesity and overweight. On the other hand, the patients with anunhealthy WC had a higher prevalence of diabetes mellitus (DM) (P = 0.004) and hypertension (HTN) (P < 0.001) compared to the patients with healthy values. Coexistence of HTN and DM was more prevalent in subjects with anunhealthy WC and WHR compared to that in those with healthy values (P = 0.002 and P = 0.032, respectively). Conclusion: It seems that the anthropometric indices of obesity are not the predictors of the angiographic severityof CAD. However, they are associated with an increased risk of cardiovascular risk factors and higher risk profile.

Keywords: body mass index, BMI, coronary artery disease, waist circumference

Procedia PDF Downloads 115
210 Constructions of Linear and Robust Codes Based on Wavelet Decompositions

Authors: Alla Levina, Sergey Taranov

Abstract:

The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.

Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability

Procedia PDF Downloads 465
209 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 450
208 Deciphering the Gut Microbiome's Role in Early-Life Immune Development

Authors: Xia Huo

Abstract:

Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden.

Keywords: environmental toxicants, immunotoxicity, vaccination, antibodies, children's health

Procedia PDF Downloads 28
207 The Impact of Life Satisfaction on Substance Abuse: Delinquency as a Mediator

Authors: Mahadzirah Mohamad, Morliyati Mohammad, Nor Azman Mat Ali, Zainudin Awang

Abstract:

Globally, youth substance abuse has been identified as the problem that causes substantial damage not only to individuals, but also to families and communities. In addition, substance abuse youths have become unproductive resources that would play lesser roles in the nation’s development. The increasing trend of substance abuse among youths has raised a lot of concern among various quarters in Malaysia. It has also been reported that Malay youths are the majority group involved in substance abuse. However, it was noted that life satisfaction had been found to be an important mitigating factor that addressed substance abuse. The objectives of the study were twofold: firstly, to ascertain the effect of life satisfaction on substance abuse among Malay youth. Secondly, to identify the role of delinquency on the relationship between life satisfaction and substance abuse. This study adopted a cross-sectional research design. Self-administered questionnaires were distributed to 500 Malay youths at the youth programmes using a two-step sampling technique: area sampling and systematic sampling. The research hypotheses were tested using Structural Equation Modelling. The findings of the study revealed that there is no significance relationship between life satisfaction and substance abuse. There is a significant inverse relationship between life satisfaction and delinquency. Moreover, delinquency has a positive significant influence on substance abuse. The use of Bootstrapping analysis proved that delinquency plays a full mediating role in the relationship between life satisfaction and substance abuse. This study suggested that life satisfaction has no effect on youth substance abuse. In order to reduce substance abuse, efforts should be undertaken to reduce delinquency behaviour by increasing youth life satisfaction.

Keywords: delinquency, life satisfaction, substance abuse, youth

Procedia PDF Downloads 328
206 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 368
205 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 41
204 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity

Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib

Abstract:

Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.

Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function

Procedia PDF Downloads 109
203 Prenatal Lead Exposure and Postpartum Depression: An Exploratory Study of Women in Mexico

Authors: Nia McRae, Robert Wright, Ghalib Bello

Abstract:

Introduction: Postpartum depression is a prevalent mood disorder that is detrimental to the mental and physical health of mothers and their newborns. Lead (Pb) is a toxic metal that is associated with hormonal imbalance and mental impairments. The hormone changes that accompany pregnancy and childbirth may be exacerbated by Pb and increase new mothers’ susceptibility to postpartum depression. To the best of the author’s knowledge, this is the only study that investigates the association between prenatal Pb exposure and postpartum depression. Identifying risk factors can contribute to improved prevention and treatment strategies for postpartum depression. Methods: Data was derived from the Programming Research in Obesity, Growth, Environment and Social Stress (PROGRESS) study which is an ongoing longitudinal birth cohort. Postpartum depression was identified by a score of 13 or above on the 10-Item Edinburg Postnatal Depression Scale (EPDS) 6-months and 12-months postpartum. Pb was measured in the blood (BPb) in the second and third trimester and in the tibia and patella 1-month postpartum. Quantile regression models were used to assess the relationship between BPb and postpartum depression. Results: BPb in the second trimester was negatively associated with the 80th percentile of depression 6-months postpartum (β: -0.26; 95% CI: -0.51, -0.01). No significant association was found between BPb in the third trimester and depression 6-months postpartum. BPb in the third trimester exhibited an inverse relationship with the 60th percentile (β: -0.23; 95% CI: -0.41, -0.06), 70th percentile (β: -0.31; 95% CI: -0.52, -0.10), and 90th percentile of depression 12-months postpartum (β: -0.36; 95% CI: -0.69, -0.03). There was no significant association between BPb in the second trimester and depression 12-months postpartum. Bone Pb concentrations were not significantly associated with postpartum depression. Conclusion: The negative association between BPb and postpartum depression may support research which demonstrates lead is a nontherapeutic stimulant. Further research is needed to verify these results and identify effect modifiers.

Keywords: depression, lead, postpartum, prenatal

Procedia PDF Downloads 198
202 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 176
201 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater

Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah

Abstract:

Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and   amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.

Keywords: nanocomposite, sorbent materials, waste water, waste polystyrene

Procedia PDF Downloads 406
200 Targeted Delivery of Sustained Release Polymeric Nanoparticles for Cancer Therapy

Authors: Jamboor K. Vishwanatha

Abstract:

Among the potent anti-cancer agents, curcumin has been found to be very efficacious against various cancer cells. Despite multiple medicinal benefits of curcumin, poor water solubility, poor physiochemical properties and low bioavailability continue to pose major challenges in developing a formulation for clinical efficacy. To improve its potential application in the clinical area, we formulated poly lactic-co-glycolic acid (PLGA) nanoparticles. The PLGA nanoparticles were formulated using solid-oil/water emulsion solvent evaporation method and then characterized for percent yield, encapsulation efficiency, surface morphology, particle size, drug distribution within nanoparticles and drug polymer interaction. Our studies showed the successful formation of smooth and spherical curcumin loaded PLGA nanoparticles with a high percent yield of about 92.01±0.13% and an encapsulation efficiency of 90.88±0.14%. The mean particle size of the nanoparticles was found to be 145nm. The in vitro drug release profile showed 55-60% drug release from the nanoparticles over a period of 24 hours with continued sustained release over a period of 8 days. Exposure to curcumin loaded nanoparticles resulted in reduced cell viability of cancer cells compared to normal cells. We used a novel non-covalent insertion of a homo-bifunctional spacer for targeted delivery of curcumin to various cancer cells. Functionalized nanoparticles for antibody/targeting agent conjugation was prepared using a cross-linking ligand, bis(sulfosuccinimidyl) suberate (BS3), which has reactive carboxyl group to conjugate efficiently to the primary amino groups of the targeting agents. In our studies, we demonstrated successful conjugation of antibodies, Annexin A2 or prostate specific membrane antigen (PSMA), to curcumin loaded PLGA nanoparticles for targeting to prostate and breast cancer cells. The percent antibody attachment to PLGA nanoparticles was found to be 92.8%. Efficient intra-cellular uptake of the targeted nanoparticles was observed in the cancer cells. These results have emphasized the potential of our multifunctional curcumin nanoparticles to improve the clinical efficacy of curcumin therapy in patients with cancer.

Keywords: polymeric nanoparticles, cancer therapy, sustained release, curcumin

Procedia PDF Downloads 301
199 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 409
198 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin

Authors: Boualla Nabila

Abstract:

The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.

Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram

Procedia PDF Downloads 249
197 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 287
196 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 53
195 Vitamin D Status in Tunisian Obese Patients

Authors: O. Berriche, R. Ben Othmen, H. Sfar, H. Abdesslam, S. Bou Meftah, S. Bhouri, F. Mahjoub, C. Amrouche, H. Jamoussi

Abstract:

Introduction: Although current evidence emphasizes a high prevalence of vitamin D deficiency and an inverse association between serum 25-hydroxyvitamin D (25-OHD) concentration and obesity, no studies have been conducted in Tunisian obese. The objectives of our study were to estimate the vitamin D deficiency in obese, identify risk factors for vitamin D deficiency, demonstrating a possible association between vitamin D levels and metabolic parameters. Methods: This was a descriptive study of 100 obese 18-65 year-old. Anthropometric measurements were determined. Fasting blood samples were assessed for the following essays : serum calcium, 25 OH vitamin D, inorganic phosphorus, fasting glucose, HDL, LDL cholesterol and triglyceride. Insulin resistance was evaluated by fasting insulin, HOMA-IR and HOMA-ß. Consumption of foods riche in vitamin D, sunscreen use, wearing protective clothes and exposed surface were assessed through applied questionnaires. Results: The deficit of vitamin D (< 30 ng/ml) among obese was 98,8%. Half of them had a rate < 10ng/ml. Environmental factors involved in vitamin D deficiency are : the veil (p = 0,001), wearing protective clothes (p = 0,04) and the exposed surface (p = 0,011) and dietary factors are represented by the daily caloric intake (p = 0,0001). The percent of fat mass was negatively related to vitamin D levels (p = 0,01) but not with BMI (p = 0,11) or waist circumference (p = 0,88). Similarly, lipid and glucose profile had no link with vitamin D. We found no relationship between Insulin resistance and vitamin D levels. Conclusion: At the end of our study, we have identified a very important vitamin D deficiency among obese. Dosage and systematic supplementation should be applied and for that physician awareness is needed.

Keywords: insulinresistance, risk factors, obesity, vitamin D

Procedia PDF Downloads 629
194 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 49
193 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 114
192 The Role of Attachment Styles, Gender Schemas, Sexual Self Schemas, and Body Exposures During Sexual Activity in Sexual Function, Marital Satisfaction, and Sexual Self-Esteem

Authors: Hossein Shareh, Farhad Seifi

Abstract:

The present study was to examine the role of attachment styles, gender schemas, sexual-self schemas, and body image during sexual activity in sexual function, marital satisfaction, and sexual self-esteem. The sampling method was among married women who were living in Mashhad; a snowball selected 765 people. Questionnaires and measures of adult attachment style (AAS), Bem Sex Role Inventory (BSRI), sexual self-schema (SSS), body exposure during sexual activity questionnaire (BESAQ), sexual function female inventory (FSFI), a short form of sexual self-esteem (SSEI-W-SF) and marital satisfaction (Enrich) were completed by participants. Data analysis using Pearson correlation and hierarchical regression and case analysis was performed by SPSS-19 software. The results showed that there is a significant correlation (P <0.05) between attachment and sexual function (r=0.342), marital satisfaction (r=0.351) and sexual self-esteem (r =0.292). A correlation (P <0.05) was observed between sexual schema (r=0.342) and sexual esteem (r=0.31). A meaningful correlation (P <0.05) exists between gender stereotypes and sexual function (r=0.352). There was a significant inverse correlation (P <0.05) between body image and their performance during sexual activity (r=0.41). There is no significant relationship between gender schemas, sexual schemas, body image, and marital satisfaction, and no relation was found between gender schemas, body image, and sexual self-esteem. Also, the result of the regression showed that attachment styles, gender schemas, sexual self- schemas, and body exposures during sexual activity are predictable in sexual function, and marital satisfaction can be predicted by attachment style and gender schema. Somewhat, sexual self-esteem can be expected by attachment style and gender schemas.

Keywords: attachment styles, gender and sexual schemas, body image, sexual function, marital satisfaction, sexual self-esteem

Procedia PDF Downloads 2
191 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain

Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang

Abstract:

Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.

Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature

Procedia PDF Downloads 354
190 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation

Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski

Abstract:

In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.

Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming

Procedia PDF Downloads 383
189 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 413