Search results for: human activity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16374

Search results for: human activity detection

15924 The Effect of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Nawal Yacoub Halim Abdelmasih

Abstract:

The link between terrorism and human rights has grown to be a chief challenge in the combat against terrorism around the sector. This is primarily based on the truth that terrorism and human rights are so closely related that after the former starts, the latter is violated. This direct connection is identified in the Vienna Declaration and program of movement adopted by way of the sector Convention on Human Rights in Vienna on June 25, 1993, which acknowledges that acts of terrorism in all their paperwork and manifestations intended to damage the human rights of people. Terrorism, therefore, represents an assault on our maximum fundamental human rights. To this stop, the first part of this article makes a specialty of the connections between terrorism and human rights and seeks to spotlight the interdependence between those two standards. The second part discusses the rising idea of cyberterrorism and its manifestations. An evaluation of the fight against cyberterrorism inside the context of human rights is likewise performed.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 0
15923 The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose

Authors: Wagner Pereira, Alphonse Kelecom

Abstract:

Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones.

Keywords: biota dose, NORM, fish, environmental protection

Procedia PDF Downloads 258
15922 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 317
15921 The Correlation of Total Phenol Content with Free Radicals Scavenging Activity and Effect of Ethanol Concentration in Extraction Process of Mangosteen Rind (Garcinia mangostana)

Authors: Ririn Lestari Sri Rahayu, Mustofa Ahda

Abstract:

The use of synthetic antioxidants often causes a negative effect on health and increases the incidence of carcinogenesis. Development of the natural antioxidants should be investigated. However, natural antioxidants have a low toxicity and are safe for human consumption. Ethanol extract of mangosteen rind (Garcinia mangostana) contains natural antioxidant compounds that have various pharmacological activities. Antioxidants from the ethanol extract of mangosteen rind have free radicals scavenging activities. The scavenging activity of ethanol extract of mangosteen rind was determined by DPPH method. The phenolic compound from the ethanol extract of mangosteen rind is determined with Folin-Ciocalteu method. The results showed that the absolute ethanol extract of mangosteen rind has IC50 of 40.072 ug/mL. The correlation of total phenols content with free radical scavenging activity has an equation y: 5.207x + 205.51 and determination value (R2) of 0.9329. Total phenols content from the ethanol extract of mangosteen rind has a good correlation with free radicals scavenging activity of DPPH.

Keywords: Antioxidant, Garcinia mangostana, Inhibition concentration 50%, Phenolic.

Procedia PDF Downloads 361
15920 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure

Procedia PDF Downloads 423
15919 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 144
15918 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 273
15917 Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing

Authors: Kumaran Narayanan, Pei-Sheng Liew

Abstract:

This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts.

Keywords: chromosome, beta-globin, DNA, gene expression, linear vector

Procedia PDF Downloads 192
15916 The Difference Between Islamic Terrorism and Tha Human Rights In The Middle East

Authors: Mina Latif Ghaly Sawiras

Abstract:

The difference between Islamic terrorism and human-rights has become a big question in the fight against Islamic terrorism globally. This is was raised on the fact that terrorism and human rights are interrelated to the extent that, when the former starts, the latter is violated. This direct linkage was recognized in the Vienna Declaration and Program of Action as adopted by the World Conference on Human Rights in Vienna on 25 June 1993 which agreed that acts of terrorism in all its forms and manifestations are aimed at the destruction of human rights. Hence, Islamic-terrorism constitutes a violation on our most basic human rights. To this end, the first part of this paper will focus on the nexus between terrorism and human rights and endeavors to draw a co-relation between these two concepts. The second part thereafter will analyse the emerging concept of cyber-terrorism and how it takes place. Further, an analysis of cyber counter-terrorism balanced as against human rights will also be undertaken. This will be done through the analysis of the concept of ‘securitization’ of human rights as well as the need to create a balance between counterterrorism efforts as against the protection of human rights at all costs. The paper will then conclude with recommendations on how to balance counter-terrorism and human rights in the modern age.

Keywords: balance, counter-terrorism, cyber-terrorism, human rights, security, violation

Procedia PDF Downloads 64
15915 Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food

Authors: Ewa Flaczyk, Monika Przeor, Joanna Kobus-Cisowska, Józef Korczak

Abstract:

The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented.

Keywords: antiglycemic activity, raw plant materials, functional food, food, nutritional sciences

Procedia PDF Downloads 470
15914 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
15913 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza

Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova

Abstract:

Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.

Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids

Procedia PDF Downloads 141
15912 Investigation of Surface Electromyograph Signal Acquired from the around Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur, Ravinder Agarwal, Amod Kumar

Abstract:

Surface electromyography is a strategy to measure the muscle activity of the skin. Sensors placed on the skin recognize the electrical current or signal generated by active muscles. A lot of the research has focussed on the detection of signal from upper limb amputee with activity of triceps and biceps muscles. The purpose of this study was to correlate phantom movement and sEMG activity in residual stump muscles of transhumeral amputee from the shoulder muscles. Eight non- amputee and seven right hand amputees were recruited for this study. sEMG data were collected for the trapezius, pectoralis and teres muscles for elevation, protraction and retraction of shoulder. Contrast between the amputees and non-amputees muscles action have been investigated. Subsequently, to investigate the impact of class separability for different motions of shoulder, analysis of variance for experimental recorded data was carried out. Results were analyzed to recognize different shoulder movements and represent a step towards the surface electromyography controlled system for amputees. Difference in F ratio (p < 0.05) values indicates the distinction in mean therefore these analysis helps to determine the independent motion. The identified signal would be used to design more accurate and efficient controllers for the upper-limb amputee for researchers.

Keywords: around shoulder amputation, surface electromyography, analysis of variance, features

Procedia PDF Downloads 433
15911 Intrusion Detection System Based on Peer to Peer

Authors: Alireza Pour Ebrahimi, Vahid Abasi

Abstract:

Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.

Keywords: network, intrusion detection system, peer to peer, internal and external network

Procedia PDF Downloads 547
15910 Elements of Usability and Sociability in Activity Management System for e-Masjid

Authors: Hidayah bt Rahmalan, Marhazli Kipli, Muhammad Suffian Sikandar Ghani, Maisarah Abu, Muhammad Faisal Ashaari, Norlizam Md Sukiban

Abstract:

This study presents an example of activity management system for e-Masjid implementing elements of usability and sociability. It is expected to resolve the shortcomings of the most e-Masjid that provide lot of activities to their community. However, the data on handling a lot of activities or events in which involve a lot of people will be difficult to manipulate. Thus, this paper presents the usability and sociability element on an activity management system that not only eases the job for the user but being practical for future when the community join any events. For the time being, this activity management system was only applied for Sayyidina Abu Bakar Mosque in Utem, Malacca.

Keywords: e-masjid, usability, sociability, activity management system

Procedia PDF Downloads 363
15909 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen

Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi

Abstract:

In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.

Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization

Procedia PDF Downloads 339
15908 The Effect of Artificial Intelligence on Human Rights Resources and Development

Authors: Tharwat Girgis Farag Girgis

Abstract:

The link between development and human rights has long been the subject of scholarly debate. As a result, a number of principles have been adopted, from the right to development to the human rights-based development approach, to understand the dynamics between the two concepts. Despite the initiatives taken, the exact relationship between development and human rights remains unclear. However, the rapprochement between the two concepts and the need for development efforts regarding human rights have increased in recent years. On the other hand, the emergence of sustainable development as an acceptable method in development goals and policies makes this consensus even more unstable. The place of sustainable development in the legal debate on human rights and its role in promoting sustainable development programs require further research. Therefore, this article attempts to map the relationship between development and human rights, with particular emphasis on the place given to sustainable development principles in international human rights law. It will continue to investigate whether it recognizes sustainable development rights. The article will therefore give a positive answer to question mentioned here. The jurisprudence and interpretive guidelines of human rights institutions travel to confirm this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 55
15907 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 161
15906 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 168
15905 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection

Authors: Weihao Wang, Zhulin Zong

Abstract:

Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.

Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals

Procedia PDF Downloads 78
15904 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, scripthon source code recognition

Procedia PDF Downloads 425
15903 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 20
15902 Synthesis and Biological Evaluation of Some Benzoxazole Derivatives as Inhibitors of Acetylcholinesterase / Butyrylcholinesterase and Tyrosinase

Authors: Ozlem Temiz-Arpaci, Meryem Tasci, Fatma Sezer Senol, İlkay Erdogan Orhan

Abstract:

Alzheimer’s disease (AD), a neurodegenerative disorder characterized by a progressive deterioration of memory and cognition, occurs more frequently in elderly people. Current treatment approaches in this disease with the major therapeutic strategy are based on the AChE and BChE inhibition. On the other hand, tyrosinase inhibition has become a target for the treatment of Parkinson’s disease (PD) since this enzyme may play a role in neuromelanin formation in the human brain and could be critical in the formation of dopamine neurotoxicity associated with neurodegeneration linked to PD. Also benzoxazoles are structural isosteres of natural nucleotides that can interact with biopolymers so that benzoxazoles showed a lot of different biological activities. In this study, a series of 2,5-disubstituted-benzoxazole derivatives were synthesized and were evaluated as possible inhibitors of acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) and tyrosinase. The results demonstrated that the compounds exhibited a weak spectrum of AChE / BChE inhibitory activity ranging between 3.92% - 54.32% except compound 8 which showed no activity against AChE and compound 4 which showed no activity against BChE at the specified molar concentrations. Also, the compounds indicated lower than tyrosinase inhibitory activity of ranging between 8.14% - 22.90% to that of reference (kojic acid).

Keywords: AChE and BChE inhibition, Alzheimer’s disease, benzoxazoles, tyrosinase inhibition

Procedia PDF Downloads 341
15901 In-vitro Antioxidant Activity of Two Selected Herbal Medicines

Authors: S. Vinotha, I. Thabrew, S. Sri Ranjani

Abstract:

Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C).

Keywords: activity, different extracts, herbal medicines, in-vitro antioxidant

Procedia PDF Downloads 405
15900 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation

Authors: Feng Guo

Abstract:

Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.

Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation

Procedia PDF Downloads 202
15899 Synthesis of Human Factors Theories and Industry 4.0

Authors: Andrew Couch, Nicholas Loyd, Nathan Tenhundfeld

Abstract:

The rapid emergence of technology observably induces disruptive effects that carry implications for internal organizational dynamics as well as external market opportunities, strategic pressures, and threats. An examination of the historical tendencies of technology innovation shows that the body of managerial knowledge for addressing such disruption is underdeveloped. Fundamentally speaking, the impacts of innovation are unique and situationally oriented. Hence, the appropriate managerial response becomes a complex function that depends on the nature of the emerging technology, the posturing of internal organizational dynamics, the rate of technological growth, and much more. This research considers a particular case of mismanagement, the BP Texas City Refinery explosion of 2005, that carries notable discrepancies on the basis of human factors principles. Moreover, this research considers the modern technological climate (shaped by Industry 4.0 technologies) and seeks to arrive at an appropriate conceptual lens by which human factors principles and Industry 4.0 may be favorably integrated. In this manner, the careful examination of these phenomena helps to better support the sustainment of human factors principles despite the disruptive impacts that are imparted by technological innovation. In essence, human factors considerations are assessed through the application of principles that stem from usability engineering, the Swiss Cheese Model of accident causation, human-automation interaction, signal detection theory, alarm design, and other factors. Notably, this stream of research supports a broader framework in seeking to guide organizations amid the uncertainties of Industry 4.0 to capture higher levels of adoption, implementation, and transparency.

Keywords: Industry 4.0, human factors engineering, management, case study

Procedia PDF Downloads 68
15898 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Authors: M. Okeke, A. Blyth

Abstract:

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.

Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC

Procedia PDF Downloads 301
15897 Identification, Synthesis, and Biological Evaluation of the Major Human Metabolite of NLRP3 Inflammasome Inhibitor MCC950

Authors: Manohar Salla, Mark S. Butler, Ruby Pelingon, Geraldine Kaeslin, Daniel E. Croker, Janet C. Reid, Jong Min Baek, Paul V. Bernhardt, Elizabeth M. J. Gillam, Matthew A. Cooper, Avril A. B. Robertson

Abstract:

MCC950 is a potent and selective inhibitor of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome that shows early promise for treatment of inflammatory diseases. The identification of major metabolites of lead molecule is an important step during drug development process. It provides an information about the metabolically labile sites in the molecule and thereby helping medicinal chemists to design metabolically stable molecules. To identify major metabolites of MCC950, the compound was incubated with human liver microsomes and subsequent analysis by (+)- and (−)-QTOF-ESI-MS/MS revealed a major metabolite formed due to hydroxylation on 1,2,3,5,6,7-hexahydro-s-indacene moiety of MCC950. This major metabolite can lose two water molecules and three possible regioisomers were synthesized. Co-elution of major metabolite with each of the synthesized compounds using HPLC-ESI-SRM-MS/MS revealed the structure of the metabolite (±) N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide. Subsequent synthesis of individual enantiomers and coelution in HPLC-ESI-SRM-MS/MS using a chiral column revealed the metabolite was R-(+)- N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide. To study the possible cytochrome P450 enzyme(s) responsible for the formation of major metabolite, MCC950 was incubated with a panel of cytochrome P450 enzymes. The result indicated that CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C18, CYP2C19, CYP2J2 and CYP3A4 are most likely responsible for the formation of the major metabolite. The biological activity of the major metabolite and the other synthesized regioisomers was also investigated by screening for for NLRP3 inflammasome inhibitory activity and cytotoxicity. The major metabolite had 170-fold less inhibitory activity (IC50-1238 nM) than MCC950 (IC50-7.5 nM). Interestingly, one regioisomer had shown nanomolar inhibitory activity (IC50-232 nM). However, no evidence of cytotoxicity was observed with any of these synthesized compounds when tested in human embryonic kidney 293 cells (HEK293) and human liver hepatocellular carcinoma G2 cells (HepG2). These key findings give an insight into the SAR of the hexahydroindacene moiety of MCC950 and reveal a metabolic soft spot which could be blocked by chemical modification.

Keywords: Cytochrome P450, inflammasome, MCC950, metabolite, microsome, NLRP3

Procedia PDF Downloads 252
15896 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 520
15895 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.

Keywords: breast cancer detection, microwave imaging, tomography, tumor

Procedia PDF Downloads 410