Search results for: fusion zone microstructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2718

Search results for: fusion zone microstructure

2268 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 132
2267 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 52
2266 Dimensionality and Superconducting Parameters of YBa2Cu3O7 Foams

Authors: Michael Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi, Yassine Slimani

Abstract:

Superconducting foams of YBa2Cu3O7 (abbreviated Y-123) were produced using the infiltration growth (IG) technique from Y2BaCuO5 (Y-211) foams. The samples were investigated by SEM (scanning electron microscopy) and electrical resistivity measurements. SEM observations indicated the specific microstructure of the foam struts with numerous tiny Y-211 particles (50-100 nm diameter) embedded in channel-like structures between the Y-123 grains. The investigation of the excess conductivity of different prepared composites was analyzed using Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuations regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), lower and upper critical magnetic fields (Bc1 and Bc2), critical current density (Jc) and numerous other superconducting parameters were estimated from the data. The analysis reveals that the presence of the tiny Y-211 particles alters the excess conductivity and the fluctuation behavior observed in standard YBCO samples.

Keywords: Excess conductivity, Foam, Microstructure, Superconductor YBa2Cu3Oy

Procedia PDF Downloads 145
2265 Surface Roughness Modeling in Dry Face Milling of Annealed and Hardened AISI 52100 Steel

Authors: Mohieddine Benghersallah, Mohamed Zakaria Zahaf, Ali Medjber, Idriss Tibakh

Abstract:

The objective of this study is to analyse the effects of cutting parameters on surface roughness in dry face milling using statistical techniques. We studied the effect of the microstructure of AISI 52100 steel on machinability before and after hardening. The machining tests were carried out on a high rigidity vertical milling machine with a 25 mm diameter face milling cutter equipped with micro-grain bicarbide inserts with PVD (Ti, AlN) coating in GC1030 grade. A Taguchi L9 experiment plan is adopted. Analysis of variance (ANOVA) was used to determine the effects of cutting parameters (Vc, fz, ap) on the roughness (Ra) of the machined surface. Regression analysis to assess the machinability of steel presented mathematical models of roughness and the combination of parameters to minimize it. The recorded results show that feed per tooth has the most significant effect on the surface condition for both steel treatment conditions. The best roughnesses were obtained for the hardened AISI 52100 steel.

Keywords: machinability, heat treatment, microstructure, surface roughness, Taguchi method

Procedia PDF Downloads 130
2264 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka

Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna

Abstract:

The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.

Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification

Procedia PDF Downloads 156
2263 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 320
2262 Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications

Authors: Jiří Kubásek, Peter Minárik, Klára Hosová, Stanislav Šašek, Jozef Veselý, Jitka Stráská, Drahomír Dvorský, Dalibor Vojtěch, Miloš Janeček

Abstract:

Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications.

Keywords: magnesium alloys, enhanced ignition temperature, mechanical properties, ECAP

Procedia PDF Downloads 81
2261 Effect of Co-doping on Polycrystalline Ni-Mn-Ga

Authors: Mahsa Namvari, Kari Ullakko

Abstract:

It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.

Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth

Procedia PDF Downloads 64
2260 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 132
2259 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 91
2258 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 426
2257 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime

Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.

Keywords: data fusion, round types speed hump, speed hump detection, surface filter

Procedia PDF Downloads 494
2256 Effect of Defect Dipoles And Microstructure Engineering in Energy Storage Performance of Co-doped Barium Titanate Ceramics

Authors: Mahmoud Saleh Mohammed Alkathy

Abstract:

Electricity generated from renewable resources may help the transition to clean energy. A reliable energy storage system is required to use this energy properly. To do this, a high breakdown strength (Eb) and a significant difference between spontaneous polarization (Pmax) and remnant polarization (Pr) are required. To achieve this, the defect dipoles in lead free BaTiO3 ferroelectric ceramics are created using Mg2+ and Ni2+ ions as acceptor co-doping in the Ti site. According to the structural analyses, the co-dopant ions were effectively incorporated into the BTO unit cell. According to the ferroelectric study, the co-doped samples display a double hysteresis loop, stronger polarization, and high breakdown strength. The formation of oxygen vacancies and defect dipoles prevent domains' movement, resulting in hysteresis loop pinching. This results in increased energy storage density and efficiency. The defect dipoles mechanism effect can be considered a fascinating technology that can guide the researcher working on developing energy storage for next-generation applications.

Keywords: microstructure, defect, energy storage, effciency

Procedia PDF Downloads 69
2255 Axiomatic Design of Laser Beam Machining Process

Authors: Nikhil Deshpande, Rahul Mahajan

Abstract:

Laser Beam Machining (LBM) is a non-traditional machining process that has inherent problems like dross, striation, and Heat Affected Zone (HAZ) which reduce the quality of machining. In the present day scenario, these problems are controlled only by iteratively adjusting a large number of process parameters. This paper applies Axiomatic Design principles to design LBM process so as to eliminate the problem of dross and striation and minimize the effect of HAZ. Process parameters and their ranges are proposed to set-up the LBM process, execute the cut and finish the workpiece so as to obtain the best quality cut.

Keywords: laser beam machining, dross, striation, heat affected zone, axiomatic design

Procedia PDF Downloads 350
2254 Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud

Authors: Mohammad Reza Kavianpour, Arsalan Behzadifard Pour, Ali Aghazadeh Cloudy, Abolfazl Moqimi

Abstract:

In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone.

Keywords: flood management, SWMM, runoff, flood zone

Procedia PDF Downloads 582
2253 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics

Authors: Amit Mallik, Anil K. Barik, Biswajit Pal

Abstract:

The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.

Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness

Procedia PDF Downloads 222
2252 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: harmonic equations, coordinate system, projections, algorithms, parallels

Procedia PDF Downloads 454
2251 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems

Authors: Wu You, Burra Venkata Durga Kumar

Abstract:

This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.

Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security

Procedia PDF Downloads 63
2250 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows

Authors: Foo Kok, Varun Thangamani

Abstract:

Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.

Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow

Procedia PDF Downloads 44
2249 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams

Authors: S. Nagheli, N. Samani, D. A. Barry

Abstract:

In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.

Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle

Procedia PDF Downloads 408
2248 Mannosidase Alpha Class 1B Member 1 Targets F Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein and Ebola Virus Glycoprotein to Endoplasmic Reticulum-To-Lysosome-Associated Degradation by Micro-Endoplasmic Reticulum-Phagy

Authors: Yong-Hui Zheng

Abstract:

Viruses hijack host machineries to propagate and spread, which disrupts cellular homeostasis and activates various counteractive mechanisms. Infection of enveloped viruses is dependent on their fusion proteins, which bind to viral receptors to allow virus entry into cells. Fusion proteins are glycoproteins and expressed in the endoplasmic reticulum (ER) by hijacking the secretory pathway. Previously, we reported that Zaire ebolavirus (EBOV)-glycoprotein (GP) expression induces ER stress, and EBOV-GP is targeted by the calnexin cycle to macro-ER-phagy for degradation. We now report that expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/SARS2)-spike (S) protein also causes ER stress, and its expression is strongly downregulated by mannosidase alpha class 1B member 1 (MAN1B1), a class I α-mannosidase from the ER. MAN1B1 co-localizes with SARS2-S in the ER, and its downregulation of SARS2-S is blocked by inhibitors targeting lysosomes and autophagy, but not proteasomes, indicating SARS2-S degradation by autolysosomes. Notably, the SARS2-S degradation does not require the core autophagy machinery including ATG3, ATG5, ATG7, and phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3)/vacuolar protein sorting 34 (VPS34), and instead, it requires Beclin 1 (BECN1), a core component in the PI3KC3 complex. In addition, MAN1B1 does not trigger SARS2-S polyubiquitination, and consistently, the SARS2-S degradation does not require the autophagy receptor sequestosome 1 (SQSTM1)/p62. MAN1B1 also downregulates EBOV-GP similarly, but this degradation does not require BECN1. Collectively, we conclude that MAN1B1 downregulates viral fusions by micro-ER-phagy, and importantly, we have identified BECN1-dependent and BECN1-independent mechanisms for micro-ER-phagy.

Keywords: Micro-ER-phagy, reticulophagy, fusion proteins, ER stress

Procedia PDF Downloads 52
2247 Agroecology and Seasonal Disparity Nexus with Nutritional Status of Children in Ethiopia

Authors: Dagem Alemayehu, Samson Gebersilassie, Jan Frank

Abstract:

Climate change is impacting nutrition through reducing food quantity and access, limiting dietary diversity, and decreased nutritional food content as well as strongly affecting seasonal rainfall in Ethiopia. Nevertheless, only a few data is available on the impacts of seasonality in Infant, and Young Child Feeding (IYCF) practices undernutrition among 6-23 months old children in different agro-ecological zones of poor resource settings of Ethiopia. Methods: Socio-demographic, anthropometry, and IYCF indicators were assessed in the harvest and lean seasons among children aged 6–23 months of age randomly selected from rural villages of lowland and midland agro-ecological zones. Results: Child stunting and underweight increased from prevalence of 32.8 % and 23.9 % (lowland &midland respectively) in the lean season to 36.1% and 33.8 % harvest seasons, respectively. The biggest increase in the prevalence of stunting and underweight between harvest and lean seasons was noted in the lowland zone. Wasting decreased from 11.6% lean to 8.5% harvest, with the biggest decline recorded in the midland zone. Minimum meal frequency, minimum acceptable diet, and poor dietary diversity increased considerably in harvest compared to a lean season in the lowland zone. Feeding practices and maternal age were predictors of wasting, while women's dietary diversity and children's age was a predictor of child dietary diversity in both seasons. Conclusion: There is seasonal variation in undernutrition and IYCF practices among children 6-23 months of age with more pronounced effect lowland agro-ecological zone.

Keywords: agroecology, seasonality, stunting, wasting

Procedia PDF Downloads 116
2246 Estimating Age In Deceased Persons From The North Indian Population Using Ossification Of The Sternoclavicular Joint

Authors: Balaji Devanathan, Gokul G, Raveena Divya, Abhishek Yadav, Sudhir K.Gupta

Abstract:

Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.

Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography

Procedia PDF Downloads 27
2245 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 210
2244 Bifunctional Activity and Stability of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5′-Monophosphate Decarboxylase

Authors: Patsarawadee Paojinda, Waranya Imprasittichai, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai

Abstract:

Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. Here, we produced gene fusions of Plasmodium falciparum OMPDC-OPRT and expressed the bifunctional protein in Escherichia coli. The enzyme was purified to homogeneity using affinity and anion-exchange chromatography, exhibited enzymatic activities and functioned as a dimer. The activities, although unstable, can be stabilized by its substrate and product during purification and long-term storage. Furthermore, the enzyme expressed a perfect catalytic efficiency (kcat/Km). The kcat was selectively enhanced up to 3 orders of magnitude, while the Km was not much affected and remained at low µM levels when compared to the monofunctional enzymes. The fusion of the two enzymes, creating a “super-enzyme” with perfect catalytic power and more flexibility, reflects cryptic relationship of enzymatic reactivaties and metabolic functions on molecular evolution.

Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum

Procedia PDF Downloads 265
2243 Fire Safety Assessment of At-Risk Groups

Authors: Naser Kazemi Eilaki, Carolyn Ahmer, Ilona Heldal, Bjarne Christian Hagen

Abstract:

Older people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to safe places. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. This research deals with the fire safety of mentioned people's buildings by means of probabilistic methods. For this purpose, fire safety is addressed by modeling the egress of our target group from a hazardous zone to a safe zone. A common type of detached house with a prevalent plan has been chosen for safety analysis, and a limit state function has been developed according to the time-line evacuation model, which is based on a two-zone and smoke development model. An analytical computer model (B-Risk) is used to consider smoke development. Since most of the involved parameters in the fire development model pose uncertainty, an appropriate probability distribution function has been considered for each one of the variables with indeterministic nature. To achieve safety and reliability for the at-risk groups, the fire safety index method has been chosen to define the probability of failure (causalities) and safety index (beta index). An improved harmony search meta-heuristic optimization algorithm has been used to define the beta index. Sensitivity analysis has been done to define the most important and effective parameters for the fire safety of the at-risk group. Results showed an area of openings and intervals to egress exits are more important in buildings, and the safety of people would improve with increasing dimensions of occupant space (building). Fire growth is more critical compared to other parameters in the home without a detector and fire distinguishing system, but in a home equipped with these facilities, it is less important. Type of disabilities has a great effect on the safety level of people who live in the same home layout, and people with visual impairment encounter more risk of capturing compared to visual and movement disabilities.

Keywords: fire safety, at-risk groups, zone model, egress time, uncertainty

Procedia PDF Downloads 82
2242 Effects of Nutrients Supply on Milk Yield, Composition and Enteric Methane Gas Emissions from Smallholder Dairy Farms in Rwanda

Authors: Jean De Dieu Ayabagabo, Paul A.Onjoro, Karubiu P. Migwi, Marie C. Dusingize

Abstract:

This study investigated the effects of feed on milk yield and quality through feed monitoring and quality assessment, and the consequent enteric methane gas emissions from smallholder dairy farms in drier areas of Rwanda, using the Tier II approach for four seasons in three zones, namely; Mayaga and peripheral Bugesera (MPB), Eastern Savanna and Central Bugesera (ESCB), and Eastern plateau (EP). The study was carried out using 186 dairy cows with a mean live weight of 292 Kg in three communal cowsheds. The milk quality analysis was carried out on 418 samples. Methane emission was estimated using prediction equations. Data collected were subjected to ANOVA. The dry matter intake was lower (p<0.05) in the long dry season (7.24 Kg), with the ESCB zone having the highest value of 9.10 Kg, explained by the practice of crop-livestock integration agriculture in that zone. The Dry matter digestibility varied between seasons and zones, ranging from 52.5 to 56.4% for seasons and from 51.9 to 57.5% for zones. The daily protein supply was higher (p<0.05) in the long rain season with 969 g. The mean daily milk production of lactating cows was 5.6 L with a lower value (p<0.05) during the long dry season (4.76 L), and the MPB zone having the lowest value of 4.65 L. The yearly milk production per cow was 1179 L. The milk fat varied from 3.79 to 5.49% with a seasonal and zone variation. No variation was observed with milk protein. The seasonal daily methane emission varied from 150 g for the long dry season to 174 g for the long rain season (p<0.05). The rain season had the highest methane emission as it is associated with high forage intake. The mean emission factor was 59.4 Kg of methane/year. The present EFs were higher than the default IPPC value of 41 Kg from developing countries in African, the Middle East, and other tropical regions livestock EFs using Tier I approach due to the higher live weight in the current study. The methane emission per unit of milk production was lower in the EP zone (46.8 g/L) due to the feed efficiency observed in that zone. Farmers should use high-quality feeds to increase the milk yield and reduce the methane gas produced per unit of milk. For an accurate assessment of the methane produced from dairy farms, there is a need for the use of the Life Cycle Assessment approach that considers all the sources of emissions.

Keywords: footprint, forage, girinka, tier

Procedia PDF Downloads 181
2241 Experiences of Online Opportunities and Risks: Examining Internet Use and Digital Literacy of Young People in Nigeria

Authors: Isah Yahaya Aliyu

Abstract:

Research on Internet use has often approached beneficial uses (online opportunities) of the Internet as separate from the risky encounters (online risks) of young people online. However, empirical evidence from diverse contexts appears to increasingly support the fusion of the two sets of online activities. Hence, the current research investigates the correlation between Internet use (IU) and digital literacy (DL) with online opportunities (OP) and risks (OR), using data from a Nigerian context, where there appears a paucity of research and literature on integrating opportunities and risks in the same study. A web-based data collection method was used to administer a survey to 335 undergraduate students in Northeastern Nigeria. Underpinned to Livingstone and Helsper model, findings are largely consistent with existing literature; IU and DL influence OP (R2 = 0.791, SE = 0.265, F-Stats = 626.566, P-value <.001), equally IU and DL influence OR as well (R2 = 0.343, SE = 0.465, F-Stats = 86.671, P-value <.001). OP and OR were found to strongly correlate positively (r = .667, n = 335, p < 0.01). This study has provided buttressing evidence from a Nigerian context of the fusion of benefits and risks of the Internet among young people. It has also upheld the argument for improved literacy as strategy for minimizing risks/harm rather than restricting use. Other theoretical and policy implications of the findings have been discussed in line with local and global debates about the Internet and its attendant effects.

Keywords: digital, internet, literacy, opportunities, risks

Procedia PDF Downloads 63
2240 An Insight Into the Effective Distribution of Lineaments Over Sheared Terrains to Hydraulically Characterize the Shear Zones in Hard Rock Aquifer System

Authors: Tamal Sur, Tapas Acharya

Abstract:

Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having a high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of the high amount of lineament accumulation and their intersection with high groundwater fluctuation zones, i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.

Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation

Procedia PDF Downloads 66
2239 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 51