Search results for: fusion bonding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 882

Search results for: fusion bonding

432 Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods

Authors: Manel Boulakoud, Abdelkader Chouaih, Fodil Hamzaoui

Abstract:

In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound.

Keywords: DFT, ab initio, HOMO-LUMO, organic compounds

Procedia PDF Downloads 510
431 An Informed Application of Emotionally Focused Therapy with Immigrant Couples

Authors: Reihaneh Mahdavishahri

Abstract:

This paper provides a brief introduction to emotionally focused therapy (EFT) and its culturally sensitive and informed application when working with immigrant couples. EFT's grounding in humanistic psychology prioritizes a non-pathologizing and empathic understanding of individuals' experiences, creating a safe space for couples to explore and create new experiences without imposing judgment or prescribing the couple "the right way of interacting" with one another. EFT's emphasis on attachment, bonding, emotions, and corrective emotional experiences makes it a fitting approach to work with multicultural couples, allowing for the corrective emotional experience to be shaped and informed by the couples' unique cultural background. This paper highlights the challenges faced by immigrant couples and explores how immigration adds a complex layer to each partner’s sense of self, their attachment bond, and their sense of safety and security within their relationships. Navigating a new culture, creating a shared sense of purpose, and re-establishing emotional bonds can be daunting for immigrant couples, often leading to a deep sense of disconnection and vulnerability. Reestablishing and fostering secure attachment between the partners in the safety of the therapeutic space can be a protective factor for these couples.

Keywords: attachment, culturally informed care, emotionally focused therapy, immigration

Procedia PDF Downloads 58
430 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 75
429 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: e-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination

Procedia PDF Downloads 321
428 Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles

Authors: Štěpán Hýsek, Milan Podlena, Miloš Pavelek, Matěj Hodoušek, Martin Böhm, Petra Gajdačová

Abstract:

Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material.

Keywords: composite, lignocellulosic materials, straw, cold plasma, surface treatment

Procedia PDF Downloads 311
427 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 302
426 Mechanical and Barrier Properties of Cellulose Fibers/HNT Reinforced Epoxy Nanocomposites

Authors: H. Alamri

Abstract:

Natural fiber reinforced composites have attracted researchers for their desirable properties of toughness, high modulus, low density, recyclability, and renewability. In fact, the use of natural fibers in polymer composites has the potential to produce materials with higher specific strength and specific modulus due of their low density. Likewise, polymer-nano-filler composites have been widely investigated for their unique and significant improvement in strength, modulus, impact strength, barrier properties, heat resistance and thermal stability. In this paper, The addition of halloysite nanotubes (HNTs) with three different weight percentages (1%, 3% and 5%) on enhancing barrier and flexural strength and modulus of cellulose-fiber (CF) /epoxy composites after water treatment for six months was studied. Results indicated that water uptake decreased as HNT content increased. The presence of HNT improved flexural strength and flexural modulus of CF/epoxy composites. SEM results showed damages in fiber-matrix interfacial bonding due to water absorption. The addition of HNTs was found to enhance to adhesion between fibers and matrix.

Keywords: mechanical properties, epoxy, nanocomposites, halloysite nanotubes

Procedia PDF Downloads 307
425 A Prospective Study on the Efficacy of Mesenchymal Stem Cells in Intervertebral Disc Regeneration

Authors: Prabhu Thangaraju, Manoj Deepak, A. Sivakumar

Abstract:

Removal of inter vertebral disc along with spinal fusion has many disadvantages such as causing stress fractures. If it is possible regenerate the spine it would be possible avoid the complications of the surgery and achieve better results. Our study involves the use of mesenchymal stem cells in regenerating the discs. Our study involved 10 patients who presented with degenerative disc disease between 2008-2011 in our hospital. After adequate pre-operative check prepared mesenchymal stem cells were injected into the disc spaces. These patients were subjected to conservative therapy for a minimum of six weeks before they were accepted into the study. They were followed up regularly for a minimum of 2years with serial radiographs and MRI. 8 out of the 10 patients had completed reduction in the pain. The T2 weighted MRI images in 9 out of the 10 patients showed a bright signal compared the previous Images which indicated that there was improvement in the hydration levels. From the case study of 10 patients who were subjected to mesenchymal cell therapy in our hospital, we can conclude that the use of mesenchymal cells in treatment of intervertebral disc degeneration in a safe and effective option.

Keywords: mesenchymal stem cells, intervertebral disc, the spine, disc degeneration

Procedia PDF Downloads 350
424 Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings

Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition.

Keywords: sol–gel, silica thin films, antireflective coatings, optical properties, triton

Procedia PDF Downloads 402
423 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk

Authors: Kashif Jabbar

Abstract:

Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.

Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation

Procedia PDF Downloads 60
422 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process

Authors: Anis A. Ansari, M. Kamil

Abstract:

The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.

Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property

Procedia PDF Downloads 68
421 Study of the Influence of the Different Treatments in Almond Shell-Based Masterbatches

Authors: A. Ibáñez, A. Martínez, A. Sánchez, M. A. León

Abstract:

This article is focused on the development of a series of biodegradable and eco-friendly masterbatches based on polylactic acid (PLA) filled with almond shell to study the influence of almond shell in the properties of injected biodegradable parts. These innovative masterbatches have 20 wt % of the almond shell. Different treatments were carried out with sodium hydroxide (NaOH) and maleic anhydride (MA) to obtain better interfacial bonding between fibre and matrix. The masterbatches were produced by varying the fibre treatments (type of treatment, concentration and temperature). The masterbatches have been injected to obtain standardised test samples in order to study mechanical properties. The results show that, the some of the treated fibres present slightly higher flexural modulus and impact strength than untreated fibres. This study is part of a LIFE project (MASTALMOND) aimed to create and test at preindustrial level new coloured masterbatches based on biodegradable polymers and containing in its formulation a high percentage of almond shell, a natural waste material, which firstly will permit to cover technical requirements of two traditional industrial sectors: toy and furniture, although the results achieved could be extended to other industrial sectors.

Keywords: additivation, almond shell, biodegradable, masterbatch, PLA, injection moulding

Procedia PDF Downloads 401
420 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak

Abstract:

The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.

Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis

Procedia PDF Downloads 292
419 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 576
418 Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process

Authors: Farzad Vakili-Farahani, Joern Lungershausen, Kilian Wasmer

Abstract:

Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes.

Keywords: wobbled laser beam welding, wobbling function, beam oscillation, micro welding

Procedia PDF Downloads 295
417 Determination of Resistance to Freezing of Bonded Façade Joint

Authors: B. Nečasová, P. Liška, J. Šlanhof

Abstract:

Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.

Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure

Procedia PDF Downloads 372
416 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 77
415 Orthodontic Treatment Using CAD/CAM System

Authors: Cristiane C. B. Alves, Livia Eisler, Gustavo Mota, Kurt Faltin Jr., Cristina L. F. Ortolani

Abstract:

The correct positioning of the brackets is essential for the success of orthodontic treatment. Indirect bracket placing technique has the main objective of eliminating the positioning errors, which commonly occur in the technique of direct system of brackets. The objective of this study is to demonstrate that the exact positioning of the brackets is of extreme relevance for the success of the treatment. The present work shows a case report of an adult female patient who attended the clinic with the complaint of being in orthodontic treatment for more than 5 years without noticing any progress. As a result of the intra-oral clinical examination and documentation analysis, a class III malocclusion, an anterior open bite, and absence of all third molars and first upper and lower bilateral premolars were observed. For the treatment, the indirect bonding technique with self-ligating ceramic braces was applied. The preparation of the trays was done after the intraoral digital scanning and printing of models with a 3D printer. Brackets were positioned virtually, using a specialized software. After twelve months of treatment, correction of the malocclusion was observed, as well as the closing of the anterior open bite. It is concluded that the adequate and precise positioning of brackets is necessary for a successful treatment.

Keywords: anterior open-bite, CAD/CAM, orthodontics, malocclusion, angle class III

Procedia PDF Downloads 160
414 Fusionopolis: The Most Decisive Economic Power Centers of the 21st Century

Authors: Norbert Csizmadia

Abstract:

The 21st Century's main power centers are the cities. More than 52% of the world’s population lives in cities, in particular in the megacities which have a population over 10 million people and is still growing. According to various research and forecasts, the main economic concentration will be in 40 megacities and global centers. Based on various competitiveness analyzes and indices, global city centers, and city networks are outlined, but if we look at other aspects of urban development like complexity, connectivity, creativity, technological development, viability, green cities, pedestrian and child friendly cities, creative and cultural centers, cultural spaces and knowledge centers, we get a city competitiveness index with quite new complex indicators. The research shows this result. In addition to the megacities and the global centers, with the investigation of functionality, we got 64 so-called ‘fusiononopolis’ (i.e., fusion-polis) which stand for the most decisive economic power centers of the 21st century. In this city competition Asian centers considerably rise, as the world's functional city competitiveness index is being formed.

Keywords: economic geography, human geography, technological development, urbanism

Procedia PDF Downloads 337
413 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 332
412 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 384
411 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties

Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid

Abstract:

Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.

Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber

Procedia PDF Downloads 369
410 Cold Spray Deposition of SS316L Powders on Al5052 Substrates and Their Potential Using for Biomedical Applications

Authors: B. Dikici, I. Ozdemir, M. Topuz

Abstract:

The corrosion behaviour of 316L stainless steel coatings obtained by cold spray method was investigated in this study. 316L powders were deposited onto Al5052 aluminum substrates. The coatings were produced using nitrogen (N2) process gas. In order to further improve the corrosion and mechanical properties of the coatings, heat treatment was applied at 250 and 750 °C. The corrosion performances of the coatings were compared using the potentiodynamic scanning (PDS) technique under in-vitro conditions (in Ringer’s solution at 37 °C). In addition, the hardness and porosity tests were carried out on the coatings. Microstructural characterization of the coatings was carried out by using scanning electron microscopy attached with energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) technique. It was found that clean surfaces and a good adhesion were achieved for particle/substrate bonding. The heat treatment process provided both elimination of the anisotropy in the coating and resulting in healing-up of the incomplete interfaces between the deposited particles. It was found that the corrosion potential of the annealed coatings at 750 °C was higher than that of commercially 316 L stainless steel. Moreover, the microstructural investigations after the corrosion tests revealed that corrosion preferentially starts at inter-splat boundaries.

Keywords: biomaterials, cold spray, 316L, corrosion, heat treatment

Procedia PDF Downloads 353
409 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes

Authors: Mohsen Abdelrazek Khorshid Ali Selim

Abstract:

Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.

Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement

Procedia PDF Downloads 45
408 A Multicenter Assessment on Psychological Well-Being Status among Medical Residents in the United Arab Emirates

Authors: Mahera Abdulrahman

Abstract:

Objective: Healthcare transformation from traditional to modern in the country recently prompted the need to address career choices, accreditation perception and satisfaction among medical residents. However, a concerted nationwide study to understand and address burnout in the medical residency program has not been conducted in the UAE and the region. Methods: A nationwide, multicenter, cross-sectional study was designed to evaluate professional burnout and depression among medical residents in order to address the gap. Results: Our results indicate that 75.5% (216/286) of UAE medical residents had moderate to high emotional exhaustion, 84% (249/298) had high depersonalization, and 74% (216/291) had a low sense of personal accomplishment. In aggregate, 70% (212/302) of medical residents were considered to be experiencing at least one symptom of burnout based on a high emotional exhaustion score or a high depersonalization score. Depression ranging from 6-22%, depending on the specialty was also striking given the fact the Arab culture lays high emphasis on family bonding. Interestingly 83% (40/48) of medical residents who had high scores for depression also reported burnout. Conclusion: Our data indicate that burnout and depression among medical residents is epidemic. There is an immediate need to address burnout through effective interventions at both the individual and institutional levels. It is imperative to reconfigure the approach to medical training for the well-being of the next generation of physicians in the Arab world.

Keywords: mental health, Gulf, Arab, residency training, burnout, depression

Procedia PDF Downloads 275
407 Effect of Enzymatic Modification on the Crystallinity of Cellulose Pulps

Authors: J. Janicki, M. Rom, C. Slusarczyk, J. Fabia, M. Siika-aho, K. Marjamaa, K. Kruus, K. Langfelder, C. Steel, M. Paloheimo, T. Puranen, S. Mäkinen, D. Wawro

Abstract:

The cellulose is one of the most abundant polymers in the world, however, its application in the high-end value products such as films or fibres, it triggered by the cellulose properties. The noticeable presence of hydrogen bonding reflected with partially crystalline structure makes the cellulose insoluble in common solvents and not meltable. The existing technologies, such as viscose process, suffer from environmental and economical problems, because of the risk of harmful chemicals liberation during the spinning process. The enzymatic modification of cellulose with endoglucanase makes it directly alkali soluble in NaOH solution, giving the opportunities for film and fibers formation. As the effect of enzymatic treatment, there are observed changes in crystalline structure and accompanying changes of the affinity of cellulose to water, demonstrated by water retention value. The objective of the project ELMO - Novel carbohydrate modifying enzymes for fibre modification is is to develop new enzyme products for modification of dissolving grade pulps. The aim is to increase the reactivity of dissolving grade pulps and remove residual hemicellulose. The scientific aim of this paper is to present the effect of enzymatic treatment on the crystallinity and affinity to water of cellulose pulps modified with enzymes.

Keywords: cellulose, crystallinity, WAXS, enzyme

Procedia PDF Downloads 214
406 The Effect of Enamel Surface Preparation on the Self-Etch Bonding of Orthodontic Tubes: An in Vitro Study

Authors: Fernandes A. C. B. C. J., de Jesus V. C., Sepideh N., Vilela OFGG, Somarin K. K., França R., Pinheiro F. H. S. L.

Abstract:

Objective: The purpose of this study was to look at the effect of pre-treatment of enamel with pumice and/or 37% phosphoric acid on the shear bond strength (SBS) of orthodontic tubes bonded to enamel while simultaneously evaluating the efficacy of orthodontic tubes bonded by self-etch primer (SEP). Materials and Methods: 39 of the crown halves were divided into 3 groups at random. Group, I was the control group utilizing both prophy paste and the conventional double etching pre-treatment method. Group II excluded the use of prophy paste prior to double etching. Group III excluded the use of both prophy paste and double etching and only utilized SEP. Bond strength of the orthodontic tubes was measured by SBS. One way ANOVA and Tukey’s HSD test were used to compare SBS values between the three groups. The statistical significance was set to p<0.05. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565) were not statistically significant (P<0.05). Conclusion: This study suggested that the use of prophy paste or pre-acid etch of the enamel surface did not provide a statistically significant difference in SBS between the three groups.

Keywords: shear bond strength, orthodontic bracket, self-etch primer, pumice, prophy

Procedia PDF Downloads 155
405 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 192
404 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 151
403 A Geographical Framework for Studying the Territorial Sustainability Based on Land Use Change

Authors: Miguel Ramirez, Ivan Lizarazo

Abstract:

The emergence of various interpretations of sustainability, including weak and strong paradigms, can be traced back to the definition of sustainable development provided in the 1987 Brundtland report and the subsequent evolution of the sustainability concept. However, there has been limited scholarly attention given to clarifying the concept of sustainability within the theoretical and conceptual framework of geography. The discipline has predominantly been focused on understanding the diverse conceptions of sustainability within its epistemological boundaries, resulting in tensions between sustainability paradigms and their associated dimensions, including the incorporation of political perspectives, with particular emphasis on environmental geography's epistemology. In response to this gap, a conceptual framework for sustainability is proposed, effectively integrating spatial and territorial concepts. This framework aims to enhance geography's role in contributing to sustainability by utilizing the land system theory, which is based on the dynamics of land use change. Such an integrated conceptual framework enables incorporating methodological tools such as remote sensing, encompassing various earth observations and fusion methods, and supervised classification techniques. Additionally, it looks for better integration of socioecological information, thereby capturing essential population-related features.

Keywords: geography, sustainability, land change science, territorial sustainability

Procedia PDF Downloads 52