Search results for: deep plate loading test
12646 The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents
Authors: Harshdeep Singh, Kuljeet Singh Anand
Abstract:
Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score.Keywords: cerebrovascular accidents, deep tendon reflexes, flanker task, reaction time, congruent stimuli, incongruent stimuli
Procedia PDF Downloads 10712645 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 7212644 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading
Authors: Hadi Rouhi Belvirdi
Abstract:
Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance
Procedia PDF Downloads 2012643 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 9512642 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading
Authors: A. Siva, K. Bala Subramanian, Kinson Prabu
Abstract:
Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity
Procedia PDF Downloads 28112641 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 16412640 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars
Authors: Othman S. Alsheraida, Sherif El-Gamal
Abstract:
Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.Keywords: anchorage, concrete, epoxy, frp, pre-stressed
Procedia PDF Downloads 29912639 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process
Authors: A. Soualem
Abstract:
The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.Keywords: springback, deep drawing, expansion, restricted deep drawing
Procedia PDF Downloads 45712638 Sleep Tracking AI Application in Smart-Watches
Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan
Abstract:
This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML
Procedia PDF Downloads 8512637 Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study
Authors: Shi-Uk Lee, Chae Young Lim
Abstract:
Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort.Keywords: magnetic stimulation, lumbar multifidus, strengthening, ultrasonography
Procedia PDF Downloads 37812636 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 16812635 Analysis of Process Methane Hydrate Formation That Include the Important Role of Deep-Sea Sediments with Analogy in Kerek Formation, Sub-Basin Kendeng, Central Java, Indonesia
Authors: Yan Bachtiar Muslih, Hangga Wijaya, Trio Fani, Putri Agustin
Abstract:
Demand of Energy in Indonesia always increases 5-6% a year, but production of conventional energy always decreases 3-5% a year, it means that conventional energy in 20-40 years ahead will not able to complete all energy demand in Indonesia, one of the solve way is using unconventional energy that is gas hydrate, gas hydrate is gas that form by biogenic process, gas hydrate stable in condition with extremely depth and low temperature, gas hydrate can form in two condition that is in pole condition and in deep-sea condition, wherein this research will focus in gas hydrate that association with methane form methane hydrate in deep-sea condition and usually form in depth between 150-2000 m, this research will focus in process of methane hydrate formation that is biogenic process and the important role of deep-sea sediment so can produce accumulation of methane hydrate, methane hydrate usually will be accumulated in find sediment in deep-sea environment with condition high-pressure and low-temperature this condition too usually make methane hydrate change into white nodule, methodology of this research is geology field work and laboratory analysis, from geology field work will get sample data consist of 10-15 samples from Kerek Formation outcrops as random for imagine the condition of deep-sea environment that influence the methane hydrate formation and also from geology field work will get data of measuring stratigraphy in outcrops Kerek Formation too from this data will help to imagine the process in deep-sea sediment like energy flow, supply sediment, and etc, and laboratory analysis is activity to analyze all data that get from geology field work, the result of this research can used to exploration activity of methane hydrate in another prospect deep-sea environment in Indonesia.Keywords: methane hydrate, deep-sea sediment, kerek formation, sub-basin of kendeng, central java, Indonesia
Procedia PDF Downloads 46612634 The Contact Behaviors of Seals Under Combined Normal and Tangential Loading: A Multiscale Finite Element Contact Analysis
Authors: Runliang Wang, Jianhua Liu, Duo Jia, Xiaoyu Ding
Abstract:
The contact between sealing surfaces plays a vital role in guaranteeing the sealing performance of various seals. To date, analyses of sealing structures have rarely considered both structural parameters (macroscale) and surface roughness information (microscale) of sealing surfaces due to the complex modeling process. Meanwhile, most of the contact analyses applied to seals were conducted only under normal loading, which still existssome distance from real loading conditions in engineering. In this paper, a multiscale rough contact model, which took both macrostructural parameters of seals and surface roughness information of sealing surfaces into consideration for the cone-cone seal, was established. By using the finite element method (FEM), the combined normal and tangential loading was applied to the model to simulate the assembly process of the cone-cone seal. The evolution of the contact behaviors during the assembly process, such as the real contact area (RCA), the distribution of contact pressure, and contact status, are studied in detail. The results showed the non-linear relationship between the RCA and the load, which was different from the normal loading cases. In addition, the evolution of the real contact area of cone-cone seals with isotropic and anisotropic rough surfaces are also compared quantitatively.Keywords: contact mechanics, FEM, randomly rough surface, real contact area, sealing
Procedia PDF Downloads 19012633 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 29712632 Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps
Authors: Jagtar Singh, Kulwinder Singh
Abstract:
Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated.Keywords: deep cryogenic treatment, impeller, Irrigation pumps SS316L, slurry erosion
Procedia PDF Downloads 39912631 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 14812630 Secondary Compression Behavior of Organic Soils in One-Dimensional Consolidation Tests
Authors: Rinku Varghese, S. Chandrakaran, K. Rangaswamy
Abstract:
The standard one-dimensional consolidation test is used to find the consolidation behaviour of artificially consolidated organic soils. Incremental loading tests were conducted on the clay without and with organic matter. The study was conducted with soil having different organic content keeping all other parameters constant. The tests were conducted on clay and artificially prepared organic soil sample at different vertical pressure. The load increment ratio considered for the test is equal to one. Artificial organic soils are used for the test by adding starch to the clay. The percentage of organic content in starch is determined by adding 5% by weight starch into the clay (inorganic soil) sample and corresponding change in organic content of soil was determined. This was expressed as percentage by weight of starch, and it was found that about 95% organic content in the soil sample. Accordingly percentage of organic content fixed and added to the sample for testing to understand the consolidation behaviour clayey soils with organic content. A detailed study of the results obtained from IL test was investigated. The main items investigated were (i) coefficient of consolidation (cv), (ii) coefficient of volume compression (mv), (iii) coefficient of permeability (k). The consolidation parameter obtained from IL test was used for determining the creep strain and creep parameter and also predicting their variation with vertical stress and organic content.Keywords: consolidation, secondary compression, creep, starch
Procedia PDF Downloads 28512629 A Superposition Method in Analyses of Clamped Thick Plates
Authors: Alexander Matrosov, Guriy Shirunov
Abstract:
A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.Keywords: general solution, method of initial functions, superposition method, thick isotropic plates
Procedia PDF Downloads 60312628 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application
Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang
Abstract:
The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process
Procedia PDF Downloads 21112627 A Survey on the Status of Test Automation
Authors: Andrei Contan, Richard Torkar
Abstract:
Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain.Keywords: survey, testing, test automation, status of test automation
Procedia PDF Downloads 66712626 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections
Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei
Abstract:
A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles
Procedia PDF Downloads 61412625 An Investigation on Viscoelastic and Electrical Properties of Biopolymer-Based Composites
Authors: K. Sever, Y. Seki, Z. Yenier, İ. Şen, M. Sarikanat
Abstract:
It is known that Chitosan, as a natural polymer, has many excellent properties such as bicompotability, biodegradability and nontoxicity. Besides it has some limitations such as poor solubility in water and low conductivity in electrical devices and sensor applications. In order to improve electrical conductivity properties grapheme loading was conducted into chitosan. For this aim, chitosan solution was prepared in acidic condition and Graphene at different ratios was mixed with chitosan solution by the help of homogenizator. After film formation electrical conductivity values of chitosan and graphene loaded chitosan were determined. After grapheme loading into chitosan,solution significant increases in surface resistivity value of chitosan were observed. Besides variations on viscoeleastic properties with graphene loading was determined by dynamic mechanical analysis. Storage and Loss moduli were obtained for chitosan and grapheme loaded chitosan samples.Keywords: chitosan, graphene, viscoelastic properties, electrical conductivity
Procedia PDF Downloads 48912624 Numerical Analysis of a Strainer Using Porous Media Technique
Authors: Ji-Hoon Byeon, Kwon-Hee Lee
Abstract:
Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).Keywords: strainer, porous media, CFD, numerical analysis
Procedia PDF Downloads 37912623 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 15612622 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 21812621 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 8212620 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme
Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim
Abstract:
Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.Keywords: functionally graded plate, thermal buckling analysis, neutral surface
Procedia PDF Downloads 40912619 Dynamic Behavior of Brain Tissue under Transient Loading
Authors: Y. J. Zhou, G. Lu
Abstract:
In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury
Procedia PDF Downloads 27412618 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 2212617 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone
Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato
Abstract:
This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus
Procedia PDF Downloads 49