Search results for: attractive%20index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 752

Search results for: attractive%20index

302 Chemically Modified Chitosan Derivatives with Ameliorated Properties Appropriate for Drug Delivery

Authors: Georgia M. Michailidou, Nina-Maria S. Ainali, Eleftheria C. Xanthopoulou, Dimitrios N. Bikiaris

Abstract:

Polysaccharides are polymeric materials derived from nature. They are extensively used in pharmaceutical technology due to their low cost, their ready availability and their low toxicity. Chitosan is the product derived from the deacetylation of chitin usually obtained from arthropods. It is a linear polysaccharide which is composed of repeated units of N-deacetylated amino groups and some N-acetylated groups residues. Due to its excellent biological properties, it is an attractive natural polymer. It is biocompatible with low toxicity and complete biodegradability. Although it has excellent properties, the chemical modification of its structure results in new derivatives with ameliorated and more improved properties compared to the initial polymer. This is the exact purpose of the present study in which chitosan was modified with three different monomers, namely trans-aconitic acid, succinic anhydride and 2-hydroxyethyl acrylate. In chitosan’s modification with trans aconitic acid, EDC was utilized as an activator of the carboxylic groups of the monomer, and then a coupling reaction with the amino groups took place. Succinic anhydride reacted with chitosan through a ring opening reaction while 2-hydroxyethyl acrylate reacted through the addition of chitosan’s amino group to the double bond of the monomer. Through FTIR and NMR measurements the success of each reaction was confirmed, and the new structures of the derivatives were verified. X-ray diffraction was utilized in order to examine the effect of the modifications in chitosan’s crystallinity. Finally, swelling tests were conducted in order to assess the improved ability of the new polymeric materials to absorb water. Our results support the successful modification of chitosan’s macromolecular chains in all three reactions. Furthermore, the new derivatives appear to be amorphous concerning their crystallinity and have great ability in absorbing water.

Keywords: chitosan, derivatives, modification, polysaccharide

Procedia PDF Downloads 86
301 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan

Authors: Kandi Sridhar, Charles Albert Linton

Abstract:

Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.

Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics

Procedia PDF Downloads 162
300 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 108
299 Stability Analysis of Green Coffee Export Markets of Ethiopia: Markov-Chain Analysis

Authors: Gabriel Woldu, Maria Sassi

Abstract:

Coffee performs a pivotal role in Ethiopia's GDP, revenue, employment, domestic demand, and export earnings. Ethiopia's coffee production and exports show high variability in the amount of production and export earnings. Despite being the continent's fifth-largest coffee producer, Ethiopia has not developed its ability to shine as a major exporter in the globe's green coffee exports. Ethiopian coffee exports were not stable and had high volume and earnings fluctuations. The main aim of this study was to analyze the dynamics of the export of coffee variation to different importing nations using a first-order Markov Chain model. 14 years of time-series data has been used to examine the direction and structural change in the export of coffee. A compound annual growth rate (CAGR) was used to determine the annual growth rate in the coffee export quantity, value, and per-unit price over the study period. The major export markets for Ethiopian coffee were Germany, Japan, and the USA, which were more stable, while countries such as France, Italy, Belgium, and Saudi Arabia were less stable and had low retention rates for Ethiopian coffee. The study, therefore, recommends that Ethiopia should again revitalize its market to France, Italy, Belgium, and Saudi Arabia, as these countries are the major coffee-consuming countries in the world to boost its export stake to the global coffee markets in the future. In order to further enhance export stability, the Ethiopian Government and other stakeholders in the coffee sector should have to work on reducing the volatility of coffee output and exports in order to improve production and quality efficiency, so that stabilize markets as well as to make the product attractive and price competitive in the importing countries.

Keywords: coffee, CAGR, Markov chain, direction of trade, Ethiopia

Procedia PDF Downloads 113
298 Synthetic Coumarin Derivatives and Their Anticancer Properties

Authors: Kabange Kasumbwe, Viresh Mohanlall, Bharti Odhav, Venu Narayanaswamy

Abstract:

Coumarins are naturally occurring plant metabolites known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological and biochemical properties and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1-CMRN7 were synthesized and evaluated for their anticancer activity. The cytotoxicity potential of the test compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer) and PBM (Peripheral Blood Mononuclear) cell lines using MTT assay keeping doxorubicin as standard drug. The apoptotic potential of the coumarin compounds was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential; pro-apoptotic changes were investigated using the AnnexinV-PI staining, JC-1, caspase-3 enzyme kits respectively on flow cytometer. The synthetic coumarin has strongly suppressed the cell proliferation of UACC-62 (Melanoma) and MCF-7 (Breast) Cancer cells, the higher toxicity of these compounds against UACC-62 (Melanoma) and MCF-7 (Breast) were CMRN3, CMRN4, CMRN5, CMRN6. However, compounds CMRN1, CMRN2, and CMRN7 had no significant inhibitory effect. Furthermore the active compounds CMRN3, CMRN4, CMRN5, CMRN6 exerted antiproliferative effects through apoptosis induction against UACC-62 (Melanoma), suggesting their potential could be considered as attractive lead molecules in the future for the development of potential anticancer agents since one of the important criteria in the development of therapeutic drugs for cancer treatment is to have high selectivity and less or no side-effects on normal cells and these compounds had no inhibitory effect against the PBMC cells.

Keywords: coumarin, MTT, apoptosis, cytotoxicity

Procedia PDF Downloads 217
297 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 255
296 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications

Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania

Abstract:

The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.

Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System

Procedia PDF Downloads 101
295 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications

Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu

Abstract:

Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.

Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating

Procedia PDF Downloads 298
294 A Pedagogical Approach of Children’s Learning by Toys, Perspective: Bangladesh

Authors: Muktadir Ahmed, Sayed Akhlakur Rahaman, Mridha Shihab Mahmud

Abstract:

The parents of Bangladesh have scarcity of knowledge about children play. Most of them do not know which toys are perfect for their children. Appropriate toys for playing is one of the most significant parts of children development from early age, besides for proper amelioration of children’s mental growth and brain capacities, toys play an emergent role. So selection of proper toy for children is very important. A toy forms the sagacity of a child and instructs child’s attitude. In this era of globalization to keep pace with everything children toys are also going forward but in a deleterious way. Maximum toys are now battery-driven and for this psychological developments of children are not increasing in effective way; therefore, pedagogical toys are proper selection. This type of toy inspires the wisdom and helps a child to reveal himself/herself. Pedagogical toys are attractive to children and help to stimulate their imagination. Pedagogical toys help them to build senso-motoric skills and hand-eye coordination. In this study, some children divided into two groups, one group played with pedagogical toys and another group played with conventional toys. This study is going to exhibit the difference between pedagogical and conventional toys for kids. The main aim of this study is to reveal the potency of pedagogical toy for children. To implement this study two Daycare Centers (DCC) Projapoti 1 & 3 of Mymensingh city had chosen. Every DCC having 1.5-6 years old children but for this study 2-5 years old children had been selected. The children of Projapoti-1 played with pedagogical toys and the children of Projapoti-2 played with conventional toys. After 6 weeks of study, the children of Projapoti-1 proved that they have improved their skills more than those children of Projapoti-3 who were playing with conventional toys. The children of Projapoti-1 have developed their touch sensation, muscular movement, imitation power, hand-eye coordination whereas the children of Projapoti-3 have only developed their muscular movement fairly (while running after battery driven toys) which is not better than those children of Projapoti-1. They cannot imitate like the children of Projapoti-1. They just had fun from playing virtual games, battery driven toys, watching cartoons etc. Actually, it is not possible to develop a child’s brain without pedagogical toy.

Keywords: brain development, mental growth, pedagogical toys, play for children

Procedia PDF Downloads 299
293 Free Energy Computation of A G-Quadruplex-Ligand Structure: A Classical Molecular Dynamics and Metadynamics Simulation Study

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure formed by stacked planes of four base paired guanines (G-quartet). Guanine rich DNA sequences appear in many sites of genomic DNA and can potential form G-quadruplexes, such as those occurring at 3'-terminus of the human telomeric DNA. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to down regulate oncogene expression making G-quadruplex an attractive target for anticancer therapy. Many G-quadruplex ligands have been proposed with a planar core to facilitate the pi–pi stacking and electrostatic interactions with the G-quartets. However, many drug candidates are impossibilitated to discriminate a G-quadruplex from a double helix DNA structure. In this context, it is important to investigate the site topology for the interaction of a G-quadruplex with a ligand. In this work, we determine the free energy surface of a G-quadruplex-ligand to study the binding modes of the G-quadruplex (TG4T) with the daunomycin (DM) drug. The complex TG4T-DM is studied using classical molecular dynamics in combination with metadynamics simulations. The metadynamics simulations permit an enhanced sampling of the conformational space with a modest computational cost and obtain free energy surfaces in terms of the collective variables (CV). The free energy surfaces of TG4T-DM exhibit other local minima, indicating the presence of additional binding modes of daunomycin that are not observed in short MD simulations without the metadynamics approach. The results are compared with similar calculations on a different structure (the mutated mu-G4T-DM where the 5' thymines on TG4T-DM have been deleted). The results should be of help to design new G-quadruplex drugs, and understand the differences in the recognition topology sites of the duplex and quadruplex DNA structures in their interaction with ligands.

Keywords: g-quadruplex, cancer, molecular dynamics, metadynamics

Procedia PDF Downloads 434
292 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 164
291 Entrepreneur Competencies: An Exploratory Study Applied to Educational Social Enterprise in South East Asia

Authors: D. Songpol, K. Taweesak, T. Sookyuen

Abstract:

A social enterprise is an organization that operates commercial business as a source of income with the aim of addressing social and environmental issues. Though it is clear that this kind of organization will benefit society and environment but in practice, it is found that most of social enterprises’ goals cannot be achieved. The most success factors of social enterprises usually rely on individual characteristics of entrepreneurs, especially in educational business. This study aims to find out the magnitude of influence from the components of entrepreneur competencies to social enterprises in education. There are developmental models of research demonstrating that knowledge, skills and attributes affect the success of social enterprises in term of sustainability, social opportunities and innovation leadership. The 5-scale questionnaire was used to collect data from the social entrepreneurs in education who operates in the South East Asian region of 135 samples and then processed by the methods of structural equation models. The results show that the competency of entrepreneurs in attributes has the greatest impact on the success of social enterprises while the skills and knowledge have respectively impact on the social enterprises’ success as well. The reason why attributes of entrepreneurs have the greatest impact on social enterprise success is because, social enterprise is an organization that does not motivate or provide attractive financial incentives to the entrepreneur. Entrepreneurs, who succeed in developing their organizations, therefore need attribute factor higher than normal entrepreneurs, especially those in education sector that have somewhat few human resources to operate their businesses. More importantly, attribute’s traits such as entrepreneurial passion, self-efficacy, entrepreneurial identity and, innovativeness and perseverance will significantly affect the ideology and tolerance of the entrepreneurs once facing the problem in doing business. In conclusion, the education social enterprise would be successful depending on the performance of the entrepreneurs which derives from higher attributes competency.

Keywords: education, entrepreneur competencies, social enterprise, South East Asia

Procedia PDF Downloads 138
290 Role of Pulsed-Dye Laser in the Treatment of Inflammatory Acne Vulgaris

Authors: Shirajul Islam Khan, Muhammad Ashraful Alam Bhuiyan, Syeda Tania Begum

Abstract:

Introduction: Acne vulgaris is one of the most common dermatologic conditions and affects the vast majority of people at some point during their lifetime, so effective treatment is of major importance. The failure of usual treatment modalities, teratogenic effects with some severe side effects, and resistance to P.Acne by Retinoides have been focusing on new therapeutic options for the treatment of acne. More recently, pulsed dye laser therapy has been reported to reduce acne lesion counts. The negligible morbidity of these treatment modalities and some other benefits of subsequent acne scar management lead this therapy more attractive. Objective: The objective of this study is to assess the efficacy and safety of pulsed dye laser therapy in the treatment of inflammatory acne vulgaris. Materials and Methods: A prospective clinical trial was done in the Department of Dermatology and Venereology, Combined Military Hospital (CMH), Dhaka, to find out the role of pulse dye laser in the treatment of inflammatory acne vulgaris. The study was carried out with 60 patients with mild to moderate acne vulgaris, and those were treated with pulsed dye laser therapy at baseline and after 4, 8, and 12 weeks. Results: Among 60 patients with inflammatory acne, 42(70%) were in the age group of less than 20 years, and 36(60%) were female. Regarding the number of inflammatory lesions, the baseline mean number (± SD) was 12.77 ± 4.01; after 4 weeks of treatment of inflammatory acne by pulsed dye laser was 7.80 ± 4.11; after 8 weeks of treatment, 6.10 ± 4.03 and after 12 weeks of treatment was 4.17 ± 4.02. After 4 weeks of treatment by pulse dye laser, the level of improvement was excellent at 3.3%, good at 10%, fair at 60%, and poor at 26.7%; after 8 weeks of treatment, excellent was 13.3%, good was 46.7%, the fair was 30% and poor 10% and after 12 weeks of treatment, excellent was 56.7%, good 13.3%, fair 23.3% and poor 6.7%. Regarding safety level, out of 60 patients of inflammatory acne vulgaris treated by pulsed dye laser, about 52(86.7%) patients did not observe any side effects. Conclusions: On the basis of the study results, it can be concluded that pulsed-dye laser is highly effective and well tolerated by patients in the treatment of inflammatory acne.

Keywords: pulsed-dye laser, inflammatory acne, acne vulgaris, retinoids

Procedia PDF Downloads 59
289 Potential Use of Thymus mastichina L. Extract as a Natural Agent against Cheese Spoilage Microorganisms

Authors: Susana P. Dias, Andrea Gomes, Fernanda M. Ferreira, Marta F. Henriques

Abstract:

Thymus mastichina L. is an endogenous medicinal and aromatic plant of the Mediterranean flora. It has been used empirically over the years as a natural preservative in food. Nowadays, the antimicrobial activity of its bioactive compounds, such as essential oils and extracts, has been well recognized. The main purpose of this study was to evaluate the antimicrobial effect of Thymus mastichina ethanolic and aqueous extracts on pathogens and spoilage microorganisms present in cheese during ripening. The effect that the extract type and its concentration has on the development of Staphylococcus aureus, Escherichia coli, and Yarrowia lipolytica populations during 24 hours, was studied 'in vitro' using appropriate culture media. The results achieved evidenced the antimicrobial activity of T. mastichina extracts against the studied strains, and the concentration of 2 mg/mL (w/v) was selected and used directly on the cheese surface during ripening. In addition to the microbiological evaluation in terms of total aerobic bacteria, Enterobacteriaceae, yeasts (particularly Y. lipolytica) and molds, the treated cheeses physicochemical evaluation (humidity, aw, pH, colour, and texture) was also performed. The results were compared with cheeses with natamicyn (positive control) and without any treatment (negative control). The physicochemical evaluation showed that the cheeses treated with ethanolic extract of Thymus mastichina, except the fact that they lead to a faster water loss during ripening, did not present considerable differences when compared to controls. The study revealed an evident antimicrobial power of the extracts, although less effective than the one shown by the use of natamycin. For this reason, the improvement of the extraction methods and the adjustment of the extract concentrations will contribute to the use of T. mastichina as a healthier and eco-friendly alternative to natamycin, that is also more attractive from an economic point of view.

Keywords: antimicrobial activity, cheese, ethanolic extract, Thymus mastichina

Procedia PDF Downloads 158
288 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 62
287 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.

Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties

Procedia PDF Downloads 366
286 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications

Authors: Maria Bercea, Monica Diana Olteanu

Abstract:

Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.

Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications

Procedia PDF Downloads 329
285 Making Food Science Education and Research Activities More Attractive for University Students and Food Enterprises by Utilizing Open Innovative Space-Approach

Authors: Anna-Maria Saarela

Abstract:

At the Savonia University of Applied Sciences (UAS), curriculum and studies have been improved by applying an Open Innovation Space approach (OIS). It is based on multidisciplinary action learning. The key elements of OIS-ideology are work-life orientation, and student-centric communal learning. In this approach, every participant can learn from each other and innovations will be created. In this social innovation educational approach, all practices are carried out in close collaboration with enterprises in real-life settings, not in classrooms. As an example, in this paper, Savonia UAS’s Future Food RDI hub (FF) shows how OIS practices are implemented by providing food product development and consumer research services for enterprises in close collaboration with academicians, students and consumers. In particular one example of OIS experimentation in the field is provided by a consumer research carried out utilizing verbal analysis protocol combined with audio-visual observation (VAP-WAVO). In this case, all co-learners were acting together in supermarket settings to collect the relevant data for a product development and the marketing department of a company. The company benefitted from the results obtained, students were more satisfied with their studies, educators and academicians were able to obtain good evidence for further collaboration as well as renewing curriculum contents based on the requirements of working life. In addition, society will benefit over time as young university adults find careers more easily through their OIS related food science studies. Also this knowledge interaction model re-news education practices and brings working-life closer to educational research institutes.

Keywords: collaboration, education, food science, industry, knowledge transfer, RDI, student

Procedia PDF Downloads 352
284 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 279
283 High and Low Salinity Polymer in Omani Oil Field

Authors: Intisar Al Busaidi, Rashid Al Maamari, Daowoud Al Mahroqi, Mahvash Karimi

Abstract:

In recent years, some research studies have been performed on the hybrid application of polymer and low salinity water flooding (LSWF). Numerous technical and economic benefits of low salinity polymer flooding (LSPF) have been reported. However, as with any EOR technology, there are various risks involved in using LSPF. Ions exchange between porous media and brine is one of the Crude oil/ brine/ rocks (COBR) reactions that is identified as a potential risk in LSPF. To the best of our knowledge, this conclusion was drawn based on bulk rheology measurements, and no explanation was provided on how water chemistry changed in the presence of polymer. Therefore, this study aimed to understand rock/ brine interactions with high and low salinity brine in the absence and presence of polymer with Omani reservoir core plugs. Many single-core flooding experiments were performed with low and high salinity polymer solutions to investigate the influence of partially hydrolyzed polyacrylic amide with different brine salinities on cation exchange reactions. Ion chromatography (IC), total organic carbon (TOC), rheological, and pH measurements were conducted for produced aqueous phase. A higher increase in pH and lower polymer adsorption was observed in LSPF compared with conventional polymer flooding. In addition, IC measurements showed that all produced fluids in the absence and presence of polymer showed elevated Ca²⁺, Mg²⁺, K+, Cl- and SO₄²⁻ ions compared to the injected fluids. However, the divalent cations levels, mainly Ca²⁺, were the highest and remained elevated for several pore volumes in the presence of LSP. The results are in line with rheological measurements where the highest viscosity reduction was recorded with the highest level of Ca²⁺ production. Despite the viscosity loss due to cation exchange reactions, LSP can be an attractive alternative to conventional polymer flooding in the Marmul field.

Keywords: polymer, ions, exchange, recovery, low salinity

Procedia PDF Downloads 83
282 SUMOylation Enhances Nurr1/1a Mediated Transactivation in a Neuronal Cell Type

Authors: Jade Edey, Andrew Bennett, Gareth Hathway

Abstract:

Nuclear receptor-related 1 protein (also known as Nurr1 or NR4A2) is an orphan nuclear receptor which plays a vital role in the development, survival and maintenance of dopaminergic (DA) neurons particularly in the substantia nigra (SN). Increasing research has investigated Nurr1’s additional role within microglia and astrocytes where it has been suggested to act as a negative regulator of inflammation; potentially offering neuroprotection. Considering both DA neurodegeneration and neuroinflammation are commonly accepted constituents of Parkinson’s Disease (PD), understanding the mechanisms by which Nurr1 regulates inflammatory processes could provide an attractive therapeutic target. Nurr1 regulates inflammation via a transrepressive mechanism possibly dependent upon SUMOylation. In addition, Nurr1 can transactivate numerous genes involved in DA synthesis, such as Tyrosine Hydroxylase (TH). A C-terminal splice variant of Nurr1, Nurr-1a, has been reported in both neuronal and glial cells. However, research into its transcriptional activity is minimal. We employed in vitro methods such as SUMO-Pulldown experiments alongside Luciferase reporter assays to investigate the SUMOylation status and transactivation capabilities of Nurr1 and Nurr-1a respectively. The SUMO-Pulldown assay demonstrated Nurr-1a undergoes significantly more SUMO modification than its full-length variant. Consequently, despite having less transcriptional activation than Nurr1, Nurr1a may play a more prominent role in repression of microglial inflammation. Contrary to published literature we also identified that SUMOylation enhances transcriptional activation by Nurr1 and Nurr1a. SUMOylation-dependent increases in Nurr1 and Nurr1a transcriptional activation were only evident in neuronal SHSY5Y cells but not in HEK293 cells. This research provides novel insight into the regulation of Nurr-1a and indicates differential effects of SUMOylation dependent regulation in neuronal and inflammatory cells.

Keywords: nuclear receptors, Parkinson’s disease, inflammation, transcriptional regulation

Procedia PDF Downloads 128
281 Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates

Authors: Qiong Tian, Lifeng Zhang, Demei Yu, Ajit D. Kelkar

Abstract:

Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs.

Keywords: boron nitride, epoxy, functionalization, prepreg, composite

Procedia PDF Downloads 414
280 Spinochromes: Kairomones Involved in the Symbiosis between the Shrimp Tuleariocaris holthuisi and Echinometra mathaei

Authors: Lola Brasseur, Guillaume Caulier, Marie Demeyer, Pascal Gerbaux, Igor Eeckhaut

Abstract:

Seawater being an ideal dispersing agent, chemical communication stays predominant in marine ecosystems. However, if many molecules acting in chemical heterospecific communication have already been well described in terrestrial ecosystems, only three of these molecules were identified in marine ecosystems. Echinoderms and their symbiotic organisms constitute very good models to study heterospecific chemical communication because each class synthesizes a specific type of molecules and symbioses with echinoderms as hosts are very usual. In this study, the chemical communication that allows the commensal shrimps Tuleariocaris holthuisi Hipeau-Jacquotte, 1965 to live with their host Echinometra mathaei (Blainville, 1825) was investigated. The chemoreception of the shrimp was characterized using olfactometers and it was demonstrated that hosts and synthetic hydroxynaphthoquinones are attractive to the symbiotic shrimps. Hydroxynaphthoquinonic pigments also known as spinochromes are by the way synthesized by sea urchin and involved in all probability in a lot of mechanisms. To our knowledge, this study is the first highlighting the ecological function of naphthoquinones as kairomones. Chemical extractions were also performed on sea urchins in order to analyze and identify their specific hydroxynaphthoquinones using HPLC-ESI-MS. Accurate mass identification and elemental composition have been performed on various organs (gonads, coelomic liquid, digestive system and test) in different morphotypes of Echinometra mathaei for a better understanding of the molecular diversity of these semiochemicals. Moreover, some experiments were performed to investigate the dependence of T. holthuisi for their host. First, the analyses showed that the molecules involved in shrimp pigmentation are the same that the ones involved in E. mathaei, suggesting a potential feeding on the host. Secondly, a substantial shrimp depigmentation and an increase of the mortality rate were demonstrated after the symbionts-host separation which could mean a potential implication of spinochromes in the shrimp metabolism.

Keywords: crustacean, sea urchin, spinochrome, symbiosis

Procedia PDF Downloads 166
279 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 408
278 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities

Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia

Abstract:

There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.

Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy

Procedia PDF Downloads 130
277 Impact of Changes in Travel Behavior Triggered by the Covid-19 Pandemic on Tourist Ininfrastructure. Water Reservoirs of the Vltava Cascade (Czechia) Case Study

Authors: Jiří Vágner, Dana Fialová

Abstract:

The Covid-19 pandemic and its effects have triggered significant changes in travel behavior. On the contrary to a deep decline in international tourism, domestic tourism has recovered. It has not fully replaced the total volume of national tourism so far. However, from a regional point of view, and especially according to the type of destinations, regional targeting has changed significantly compared to the previous period. Urban destinations, which used to be the domain of foreign tourists, have been relatively orphaned, in contrast to destinations tied to natural attractions, which have seen seasonal increases. Even here, at a lower hierarchical geographic level, we can observe the differentiation resulting from the existing localization and infrastructure. The case study is focused on the three largest water reservoirs of the Vltava Cascade in Czechia– Lipno, Orlík, and Slapy. Based on a detailed field survey, in the periods before and during the pandemic, as well as available statistical data (Tourdata; Czech Statistical Office, Czech Cadaster and Ordnance Survey), different trends in the exploitation of these destinations with regard to existing or planned infrastructure are documented, analyzed and explained. This gives us the opportunity to discuss on concrete examples of generally known phenomena that are usually neglected in tourism: slum, brownfield, greenfield. Changes in travel behavior – especially the focus on spending leisure time individually in naturally attractive destinations – can affect the use of sites, which can be defined as a tourist or recreational slum, brownfield, but also as a tourist greenfield development. Sociocultural changes and perception of destinations by tourists and other actors represent, besides environmental changes, major trends in current tourism.

Keywords: Covid-19 pandemic, czechia, sociocultural and environmental impacts, tourist infrastructure, travel behavior, the Vltava Cascade water reservoirs

Procedia PDF Downloads 128
276 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 252
275 Design and Synthesis of Some Pyrimidine Derivatives as Bruton’s Tyrosine Kinase Inhibitors for Hematologic Malignancies

Authors: Ibrahim M. Labouta, Gina N. Tageldin, Salwa M. Fahmy, Hayam M. Ashour, Mounir A. Khalil, Tamer M. Ibrahim, Nefertiti A. El-Nikhely

Abstract:

Bruton’s tyrosine kinase (BTK) is a critical effector molecule in B cell antigen receptor (BCR) signaling transduction. It regulates B cell proliferation, development and survival. Since BTK is widely expressed in many B cell leukaemias and lymphomas, targeting BTK by small molecules inhibitors became an attractive idea as new treatment modalities for B cell mediated hematologic malignancies. Ibrutinib is the 1st generation BTK inhibitor, approved by FDA for treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). It binds irreversibly to the unique cysteine (Cys481) within the ATP-binding pocket of BTK. Besides ibrutinib, many irreversible covalent BTK inhibitors comprising pyrimidine nucleus such as spebrutinib (phase IIb) showed high selectivity and potency when compared to it. In this study, the designed compounds were based on 5-cyano-2-methylsulfanyl pyrimidine core and decorated with electrophilic warheads which are essential for the optimal activity for targeted covalent inhibition (TCI). However, modifications at pyrimidine C4 or C6 were made by introduction of substituted amines which are provided to behave differently. The synthesized derivatives were evaluated for their anticancer activity in leukemia cell lines (e.g. THP-1). Results showed that, some derivatives exhibited antiproliferative activity with IC50 ranged from 5-50 μM, The in vitro enzymatic inhibitory assay for these compounds against BTK is still under investigation. Nevertheless, we could conclude from the initial biological screening that, the synthesized 4 or 6-subsitituted aminopyrimidines represent promising and novel antileukemic agents. Meanwhile, further studies are still needed to attribute this activity through targeting BTK enzyme and inhibition of BCR signaling pathway.

Keywords: BTK inhibitors, hematologic malignancies, structure based drug design (SBDD), targeted covalent inhibitors (TCI)

Procedia PDF Downloads 129
274 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels

Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane

Abstract:

The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.

Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers

Procedia PDF Downloads 108
273 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 225