Search results for: SME - farmers
507 The Optimal Irrigation in the Mitidja Plain
Authors: Gherbi Khadidja
Abstract:
In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.Keywords: optimal irrigation, soil moisture, smart irrigation, water management
Procedia PDF Downloads 109506 Animal Welfare through Stockmanship Competence and Its Relationship to Productivity and Economic Profitability: The Case of Backyard Goat Production in the Philippines
Authors: M. J. Alcedo, K. Ito, K. Maeda
Abstract:
A stockperson has a significant influence on the productivity and welfare of their animals. This influence may be good or bad depending on their stockmanship competence. In this study, stockmanship competence (SC) is defined as the capacity of the stockperson to ensure the welfare of their animals by providing their animal’s needs. The study was conducted to evaluate the stockmanship competence of backyard goat raisers and to examine its relationship to productivity and economic profitability. This was made possible by interviewing 101 backyard goat raisers who have undergone farmer livestock school on integrated goat management (FLS IGM) in Region I, Philippines on September 3-30, 2012 and March 4-17, 2013. Secondary data needed were gathered from the local government agencies involved. Data on stockmanship, goat productivity and farmer’s income before and after attending FLS-IGM were gathered through a semi-structured interview. Questions for stockamnship were based on the Philippine recommends on goat production, tips on goat raising and other scientific literature. Stockmanship competence index score (SCIS) was computed by summing the raw scores derived from each components of SC divided by the total number of components. Pearson correlation through SPSS was used to see the relationship between SC, productivity and income. Result showed that majority raised native and upgraded goats. The computed mean SCIS before and after undergoing FLS-IGM was 38.53% and 75.81%, respectively, an improvement of 49.17%. Both index scores resulted in significant differences in productivity and income. The median mature weight and mortality rate of goats before FLS-IGM, where SC was low, was 14 kg and 50% respectively. On the other hand, after stockmanship had improved, the median mature weight increased to 19 kgs and mortality rate decreased to 11.11%. Likewise, fewer goat diseases were observed by farmers as compared before. With regards to income, there was 127.34% difference on the median net income derived by farmers. Result implies that improved stockmanship competence can lead not only to increased productivity and income of backyard goat raisers but also welfare of the animal.Keywords: stockmanship, backyard goat production, animal welfare, Philippines
Procedia PDF Downloads 321505 Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations
Authors: Faheem Shahzad Baloch, Muhammad Azhar Nadeem, Muhammad Amjad Nawaz, Ephrem Habyarimana, Gonul Comertpay, Tolga Karakoy, Rustu Hatipoglu, Mehmet Zahit Yeken, Vahdettin Ciftci
Abstract:
Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains.Keywords: bean germplasm, DArTseq markers, genotyping by sequencing, Turkey, whole genome diversity
Procedia PDF Downloads 243504 Climate Smart Agriculture: Nano Technology in Solar Drying
Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu
Abstract:
Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.Keywords: energy, renewable energy, solar collector, solar drying
Procedia PDF Downloads 224503 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 104502 Case Study: Institutionalization of CSR Activities of MRGC through an NGO (OSDI)
Authors: Aasim Siddiqui
Abstract:
In a country where 45.6 per cent of the total population lives below the poverty line, according to the Human Development Report 2014 by UNDP, an increasing number of private companies are now dedicating their resources to remedy this situation of chronic poverty. Most corporations in Pakistan now have a separate and dedicated department for Corporate Social Responsibility (CSR), albeit with varying goals and hence different strategies for achieving those goals. Similarly, Marine Group of Companies (MRGC) also has a robust CSR policy which the group implements through a Non-Government Organization (NGO) called Organization for Social Development Initiatives (OSDI). This organization, which operates under the ambit of MRGC’s CSR division, has a concentrated focus on helping the poorest communities in the rural areas of Pakistan to break out of intergenerational poverty. This paper maps the theoretical strategies as well as practical activities undertaken by OSDI for poverty alleviation via rural development in Pakistan. To obtain in-depth information of demographics, livelihood and socio-economic indicators in OSDI’s focused districts; a combination of quantitative and qualitative research methodologies was used during the course of this research. The paper highlights and explains OSDI’s unique three-pronged approach which aims at reducing poverty through income generation via the livelihood assistance program and through the provision of access to the most basic services (including health and education) via the community development and food security programs. Modeled on the concept of capacity building, OSDI’s modus operandi is centered on disbursing timely microcredit facilities to farmers who can benefit from these funds by investing in productive assets to foster financial capability for the future. With a focus on increasing the income of poor farmers, OSDI’s approach is to integrate all the socio-economic facets: education, health and sanitation and food security, to induce a sustained positive impact on their living standards.Keywords: CSR, poverty, rural, sustainability
Procedia PDF Downloads 246501 A Study on Conventional and Improved Tillage Practices for Sowing Paddy in Wheat Harvested Field
Authors: R. N. Pateriya, T. K. Bhattacharya
Abstract:
In India, rice-wheat cropping system occupies the major area and contributes about 40% of the country’s total food grain production. It is necessary that production of rice and wheat must keep pace with growing population. However, various factors such as degradation in natural resources, shift in cropping pattern, energy constraints etc. are causing reduction in the productivity of these crops. Seedbed for rice after wheat is difficult to prepare due to presence of straw and stubbles, and require excessive tillage operations to bring optimum tilth. In addition, delayed sowing and transplanting of rice is mainly due to poor crop residue management, multiplicity of tillage operations and non-availability of the power source. With increasing concern for fuel conservation and energy management, farmers might wish to estimate the best cultivation system for more productivity. The widest spread method of tilling land is ploughing with mould board plough. However, with the mould board plough upper layer of soil is neither always loosened at the desired extent nor proper mixing of different layers are achieved. Therefore, additional operations carried out to improve tilth. The farmers are becoming increasingly aware of the need for minimum tillage by minimizing the use of machines. Soil management can be achieved by using the combined active-passive tillage machines. A study was therefore, undertaken in wheat-harvested field to study the impact of conventional and modified tillage practices on paddy crop cultivation. Tillage treatments with tractor as a power source were selected during the experiment. The selected level of tillage treatments of tractor machinery management were (T1:- Direct Sowing of Rice), (T2:- 2 to 3 harrowing and no Puddling with manual transplanting), (T3:- 2 to 3 harrowing and Puddling with paddy harrow with manual transplanting), (T4:- 2 to 3 harrowing and Puddling with Rotavator with manual transplanting). The maximum output was obtained with treatment T1 (7.85 t/ha)) followed by T4 (6.4 t/ha), T3 (6.25 t/ha) and T2 (6.0 t/ha)) respectively.Keywords: crop residues, cropping system, minimum tillage, yield
Procedia PDF Downloads 208500 The Role of Climate-Smart Agriculture in the Contribution of Small-Scale Farming towards Ensuring Food Security in South Africa
Authors: Victor O. Abegunde, Melusi Sibanda
Abstract:
There is need for a great deal of attention on small-scale agriculture for livelihood and food security because of the expanding global population. Small-scale agriculture has been identified as a major driving force of agricultural and rural development. However, the high dependence of the sector on natural and climatic resources has made small-scale farmers highly vulnerable to the adverse impact of climatic change thereby necessitating the need for embracing practices or concepts that will help absorb shocks from changes in climatic condition. This study examines the strategic position of small-scale farming in South African agriculture and in ensuring food security in the country, the vulnerability of small-scale agriculture to climate change and the potential of the concept of climate-smart agriculture to tackle the challenge of climate change. The study carried out a systematic review of peer-reviewed literature touching small-scale agriculture, climate change, food security and climate-smart agriculture, employing the realist review method. Findings revealed that increased productivity in the small-scale agricultural sector has a great potential of improving the food security of households in South Africa and reducing dependence on food purchase in a context of high food price inflation. Findings, however, also revealed that climate change affects small-scale subsistence farmers in terms of productivity, food security and family income, categorizing the impact on smallholder livelihoods into three major groups; biological processes, environmental and physical processes and impact on health. Analysis of the literature consistently showed that climate-smart agriculture integrates the benefits of adaptation and resilience to climate change, mitigation, and food security. As a result, farming households adopting climate-smart agriculture will be better off than their counterparts who do not. This study concludes that climate-smart agriculture could be a very good bridge linking small-scale agricultural sector and agricultural productivity and development which could bring about the much needed food security.Keywords: climate change, climate-smart agriculture, food security, small-scale
Procedia PDF Downloads 241499 A Literature Study on IoT Based Monitoring System for Smart Agriculture
Authors: Sonu Rana, Jyoti Verma, A. K. Gautam
Abstract:
In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology
Procedia PDF Downloads 116498 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack
Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole
Abstract:
Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species
Procedia PDF Downloads 141497 Impact of Wastewater Irrigation on Soil and Vegetable Quality in Peri Urban Cropping System
Authors: Neelam Patel
Abstract:
Farmers in peri-urban areas of developing countries depend on wastewater for Irrigation but with great environmental and health hazards. Since, irrigation with wastewater is growing in the developing countries but its suitability to environment and other health factors should be checked. Metal pollution is a very serious issue these days, various neuro, physical and mental disorders are prevailing due to the metal pollution. Waste water contaminated with heavy metals got accumulated in the soil and then bioaccumulated in the vegetables irrigated with waste water. A 3-year field experiment on cauliflower has been done by using wastewater with two different methods of irrigation i.e. Drip and Flood irrigation and checked the impact on the cauliflower and soil quality. Heavy metals (Cr, Cu, Ni, Zn and Pb) have been studied in wastewater used for the irrigation and their accumulation in the soil and vegetable was studied. The study reveals that the concentration of heavy metals increases by 100 times from initial in soil. After 3 years, the concentration of Copper(41 ppm) Chromium(39.4 ppm) Lead(62.2ppm) Zinc(100.5 ppm) and Nickel(75.7 ppm) in Flood irrigated soil while in Drip irrigated soil , Copper (36.4 ppm) Chromium(36.8 ppm) Lead(53.7 ppm) Zinc(70.3 ppm) and Nickel (53.9 ppm). In vegetable, the wastewater irrigated shows an increase in the concentration of metals with the time and the accumulation of Nickel (6.98ppm), Lead (30.18 ppm) and Zinc (55.83 ppm) in drip irrigated while in flood irrigated, Nickel (30.58 ppm), Lead (73.95ppm) Zinc (93.50 ppm) and Copper (54.58 ppm) in edible part of cauliflower which is above the permissible limits suggested by different international agencies. On other hand, the nutrients content i.e. Nitrogen, Phosphorus and Potassium in soil was increased in concentration with time. The study pointed out that the metal contaminated waste water consisting the nutrients in it but also heavy metals which causes health issues in human. While the increase in concentration of nutrients in the soil indirectly helpful to the farmers economically by restricting the use of fertilizers. But the metal pollution directly affects the health of human being. The different method of irrigation suggested that the drip irrigated vegetable acquired less metal then the flood one and is a better combo with the waste water for the irrigation.Keywords: drip irrigation, heavy metals, metal contamination, waste water
Procedia PDF Downloads 327496 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 51495 Multifunctionality of Cover Crops in South Texas: Looking at Multiple Benefits of Cover Cropping on Small Farms in a Subtropical Climate
Authors: Savannah Rugg, Carlo Moreno, Pushpa Soti, Alexis Racelis
Abstract:
Situated in deep South Texas, the Lower Rio Grande Valley (LRGV) is considered one the most productive agricultural regions in the southern US. With the highest concentration of organic farms in the state (Hidalgo county), the LRGV has a strong potential to be leaders in sustainable agriculture. Finding management practices that comply with organic certification and increase the health of the agroecosytem and the farmers working the land is increasingly pertinent. Cover cropping, or the intentional planting of non-cash crop vegetation, can serve multiple functions in an agroecosystem by decreasing environmental pollutants that originate from the agroecosystem, reducing inputs needed for crop production, and potentially decreasing on-farm costs for farmers—overall increasing the sustainability of the farm. Use of cover crops on otherwise fallow lands have shown to enhance ecosystem services such as: attracting native beneficial insects (pollinators), increase nutrient availability in topsoil, prevent nutrient leaching, increase soil organic matter, and reduces soil erosion. In this study, four cover crops (Lablab, Sudan Grass, Sunn Hemp, and Pearl Millet) were analyzed in the subtropical region of south Texas to see how their multiple functions enhance ecosystem services. The four cover crops were assessed to see their potential to harbor native insects, their potential to increase soil nitrogen, to increase soil organic matter, and to suppress weeds. The preliminary results suggest that these subtropical varieties of cover crops have potential to enhance ecosystem services on agricultural land in the RGV by increasing soil organic matter (in all varieties), increasing nitrogen in topsoil (Lablab, Sunn Hemp), and reducing weeds (Sudan Grass).Keywords: cover crops, ecosystem services, subtropical agriculture, sustainable agriculture
Procedia PDF Downloads 296494 Occurrence and Levels of Mycotoxins in On-Farm Stored Sesame in Major-Growing Districts of Ethiopia
Authors: S. Alemayehu, F. A. Abera, K. M. Ayimut, R. Mahroof, J. Harvey, B. Subramanyam
Abstract:
The occurrence of mycotoxins in sesame seeds poses a significant threat to food safety and the economy in Ethiopia. This study aimed to determine the levels and occurrence of mycotoxins in on-farm stored sesame seeds in major-growing districts of Ethiopia. A total of 470 sesame seed samples were collected from randomly selected farmers' storage structures in five major-growing districts using purposive sampling techniques. An enzyme-linked immunosorbent assay (ELISA) was used to analyze the collected samples for the presence of four mycotoxins: total aflatoxins (AFT), ochratoxin A (OTA), total fumonisins (FUM), and deoxynivalenol (DON). The study found that all samples contained varying levels of mycotoxins, with AFT and DON being the most prevalent. AFT concentrations in detected samples ranged from 2.5 to 27.8 parts per billion (ppb), with a mean concentration of 13.8 ppb. OTA levels ranged from 5.0 ppb to 9.7 ppb, with a mean level of 7.1 ppb. Total fumonisin concentrations ranged from 300 to 1300 ppb in all samples, with a mean of 800 ppb. DON concentrations ranged from 560 to 700 ppb in the analyzed samples. The majority (96.8%) of the samples were safe from AFT, FUM, and DON mean levels when compared to the Federal Drug Administration maximum limit. AFT-OTA, DON-OTA, AFT-FUM, FUM-DON, and FUM-OTA, respectively, had co-occurrence rates of 44.0, 38.3, 33.8, 30.2, 29.8 and 26.0% for mycotoxins. On average, 37.2% of the sesame samples had fungal infection, and seed germination rates ranged from 66.8% to 91.1%. The Limmu district had higher levels of total aflatoxins, kernel infection, and lower germination rates than other districts. The Wollega variety of sesame had higher kernel infection, total aflatoxins concentration, and lower germination rates than other varieties. Grain age had a statistically significant (p<0.05) effect on both kernel infection and germination. The storage methods used for sesame in major-growing districts of Ethiopia favor mycotoxin-producing fungi. As the levels of mycotoxins in sesame are of public health significance, stakeholders should come together to identify secure and suitable storage technologies to maintain the quantity and quality of sesame at the level of smallholder farmers. This study suggests the need for suitable storage technologies to maintain the quality of sesame and reduce the risk of mycotoxin contamination.Keywords: districts, seed germination, kernel infection, moisture content, relative humidity, temperature
Procedia PDF Downloads 131493 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 65492 Intelligent Crop Circle: A Blockchain-Driven, IoT-Based, AI-Powered Sustainable Agriculture System
Authors: Mishak Rahul, Naveen Kumar, Bharath Kumar
Abstract:
Conceived as a high-end engine to revolutionise sustainable agri-food production, the intelligent crop circle (ICC) aims to incorporate the Internet of Things (IoT), blockchain technology and artificial intelligence (AI) to bolster resource efficiency and prevent waste, increase the volume of production and bring about sustainable solutions with long-term ecosystem conservation as the guiding principle. The operating principle of the ICC relies on bringing together multidisciplinary bottom-up collaborations between producers, researchers and consumers. Key elements of the framework include IoT-based smart sensors for sensing soil moisture, temperature, humidity, nutrient and air quality, which provide short-interval and timely data; blockchain technology for data storage on a private chain, which maintains data integrity, traceability and transparency; and AI-based predictive analysis, which actively predicts resource utilisation, plant growth and environment. This data and AI insights are built into the ICC platform, which uses the resulting DSS (Decision Support System) outlined as help in decision making, delivered through an easy-touse mobile app or web-based interface. Farmers are assumed to use such a decision-making aid behind the power of the logic informed by the data pool. Building on existing data available in the farm management systems, the ICC platform is easily interoperable with other IoT devices. ICC facilitates connections and information sharing in real-time between users, including farmers, researchers and industrial partners, enabling them to cooperate in farming innovation and knowledge exchange. Moreover, ICC supports sustainable practice in agriculture by integrating gamification techniques to stimulate farm adopters, deploying VR technologies to model and visualise 3D farm environments and farm conditions, framing the field scenarios using VR headsets and Real-Time 3D engines, and leveraging edge technologies to facilitate secure and fast communication and collaboration between users involved. And through allowing blockchain-based marketplaces, ICC offers traceability from farm to fork – that is: from producer to consumer. It empowers informed decision-making through tailor-made recommendations generated by means of AI-driven analysis and technology democratisation, enabling small-scale and resource-limited farmers to get their voice heard. It connects with traditional knowledge, brings together multi-stakeholder interactions as well as establishes a participatory ecosystem to incentivise continuous growth and development towards more sustainable agro-ecological food systems. This integrated approach leverages the power of emerging technologies to provide sustainable solutions for a resilient food system, ensuring sustainable agriculture worldwide.Keywords: blockchain, internet of things, artificial intelligence, decision support system, virtual reality, gamification, traceability, sustainable agriculture
Procedia PDF Downloads 42491 Place and Importance of Goats in the Milk Sector in Algeria
Authors: Tennah Safia, Azzag Naouelle, Derdour Salima, Hafsi Fella, Laouadi Mourad, Laamari Abdalouahab, Ghalmi Farida, Kafidi Nacerredine
Abstract:
Currently, goat farming is widely practiced among the rural population of Algeria. Although milk yield of goats is low (110 liters per goat and per year on average), this milk partly ensures the feeding of small children and provides raw milk, curd, and fermented milk to the whole family. In addition, given its investment cost, which is ten times lower than that of a cow, this level of production is still of interest. This interest is reinforced by the qualities of goat's milk, highly sought after for its nutritional value superior to that of cow's milk. In the same way, its aptitude for the transformation, in particular in quality cheeses, is very sought after. The objective of this study is to give the situation of goat milk production in rural areas of Algeria and to establish a classification of goat breeds according to their production potential. For this, a survey was carried out with goat farmers in Algerian steppe. Three indigenous breeds were encountered in this study: the breed Arabia, Mozabite, and Mekatia; Arabia being the most dominant. The Mekatia breed and the Mozabite breed appear to have higher production and milking abilities than other local breeds. They are therefore indicated to play the role of local dairy breeds par excellence. The other breed that could be improved milk performance is the Arabia breed. There, however, the milk performance of this breed is low. However, in order to increase milk production, uncontrolled crosses with imported breeds (mainly Saanen and Alpine) were carried out. The third population that can be included in the category for dairy production is the dairy breed group of imported origin. There are farms in Algeria composed of Alpine and Saanen breeds born locally. Improved milk performance of local goats, Crusader population, and dairy breeds of imported origin could be done by selection. For this, it is necessary to set up a milk control to detect the best animals. This control could be carried out among interested farmers in each large goat breeding area. In conclusion, sustained efforts must be made to enable the sustainable development of the goat sector in Algeria. It will, therefore, be necessary to deepen the reflection on a national strategy to valorize goat's milk, taking into account the specificities of the environment, the genetic biodiversity, and the eating habits of the Algerian consumer.Keywords: goat, milk, Algeria, biodiversity
Procedia PDF Downloads 185490 Sustainable Crop Production: Greenhouse Gas Management in Farm Value Chain
Authors: Aswathaman Vijayan, Manish Jha, Ullas Theertha
Abstract:
Climate change and Global warming have become an issue for both developed and developing countries and perhaps the biggest threat to the environment. We at ITC Limited believe that a company’s performance must be measured by its Triple Bottom Line contribution to building economic, social and environmental capital. This Triple Bottom Line strategy focuses on - Embedding sustainability in business practices, Investing in social development and Adopting a low carbon growth path with a cleaner environment approach. The Agri Business Division - ILTD operates in the tobacco crop growing regions of Andhra Pradesh and Karnataka province of India. The Agri value chain of the company comprises of two distinct phases: First phase is Agricultural operations undertaken by ITC trained farmers and the second phase is Industrial operations which include marketing and processing of the agricultural produce. This research work covers the Greenhouse Gas (GHG) management strategy of ITC in the Agricultural operations undertaken by the farmers. The agriculture sector adds considerably to global GHG emissions through the use of carbon-based energies, use of fertilizers and other farming operations such as ploughing. In order to minimize the impact of farming operations on the environment, ITC has a taken a big leap in implementing system and process in reducing the GHG impact in farm value chain by partnering with the farming community. The company has undertaken a unique three-pronged approach for GHG management at the farm value chain: 1) GHG inventory at farm value chain: Different sources of GHG emission in the farm value chain were identified and quantified for the baseline year, as per the IPCC guidelines for greenhouse gas inventories. The major sources of emission identified are - emission due to nitrogenous fertilizer application during seedling production and main-field; emission due to diesel usage for farm machinery; emission due to fuel consumption and due to burning of crop residues. 2) Identification and implementation of technologies to reduce GHG emission: Various methodologies and technologies were identified for each GHG emission source and implemented at farm level. The identified methodologies are – reducing the consumption of chemical fertilizer usage at the farm through site-specific nutrient recommendation; Usage of sharp shovel for land preparation to reduce diesel consumption; implementation of energy conservation technologies to reduce fuel requirement and avoiding burning of crop residue by incorporation in the main field. These identified methodologies were implemented at farm level, and the GHG emission was quantified to understand the reduction in GHG emission. 3) Social and farm forestry for CO2 sequestration: In addition, the company encouraged social and farm forestry in the waste lands to convert it into green cover. The plantations are carried out with fast growing trees viz., Eucalyptus, Casuarina, and Subabul at the rate of 10,000 Ha of land per year. The above approach minimized considerable amount of GHG emission at the farm value chain benefiting farmers, community, and environment at a whole. In addition, the CO₂ stock created by social and farm forestry program has made the farm value chain to become environment-friendly.Keywords: CO₂ sequestration, farm value chain, greenhouse gas, ITC limited
Procedia PDF Downloads 295489 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 438488 Assessment of Seeding and Weeding Field Robot Performance
Authors: Victor Bloch, Eerikki Kaila, Reetta Palva
Abstract:
Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.Keywords: agricultural robot, field robot, plant detection, robot performance
Procedia PDF Downloads 87487 Income Generation and Employment Opportunity of the Entrepreneurs and Farmers Through Production, Processing, and Marketing of Medicinal Plants in Bangladesh
Authors: Md. Nuru Miah, A. F. M. Akhter Uddin
Abstract:
Medicinal plants are grown naturally in a tropical environment in Bangladesh and used as drug and therapeutic agents in the health care system. According to Bangladesh Agricultural Research Institute (BARI), there are 722 species of medicinal plants in the country. Of them, 255 plants are utilized by the manufacturers of Ayurvedic and Unani medicines. Medicinal plants like Aloevera, Ashwagonda, shotomul,Tulsi, Vuikumra, Misridana are extensively cultivated in some selected areas as well; where Aloevera scored the highest position in production. In the early 1980, Ayurvedic and Unani companies procured 80 percent of medicinal plants from natural forests, and the rest 20 percent was imported. Now the scenario has changed; 80 percent is imported, and the rest 20 percent is collected from local products(Source: Astudy on sectorbased need assessment of Business promotion council-Herbal products and medicinal plants, page-4). Uttara Development Program Society, a leading Non- Government development organization in Bangladesh, has been implementing a value chain development project under promoting Agricultural commercialization and Enterprises of Pally Karma Sahayak Foundation (PKSF) funded by the International Fund for Agricultural Development (IFAD) in Natore Sadar Upazila from April 2017 to sustainably develop the technological interventions for products and market development. The ultimate goal of the project is to increase income, generate employment and develop this sector as a sustainable business enterprise. Altogether 10,000 farmers (Nursery owners, growers, input supplier, processors, whole sellers, and retailers) are engaged in different activities of the project. The entrepreneurs engaged in medicinal plant cultivation did not know and follow environmental and good agricultural practices. They used to adopt traditional methodology in production and processing. Locally the farmers didn’t have any positive initiative to expand their business as well as developvalue added products. A lot of diversified products could be possible to develop and marketed with the introduction of post-harvest processing technology and market linkage with the local and global buyer. Training is imparted to the nursery owners and herbal growers on production technologies, sowing method, use of organic fertilizers/compost/pesticides, harvesting procedures, and storage facilities. Different types of herbal tea like Rosella, Moringa, Tulshi, and Basak are being produced and packed locally with a good scope of its marketing in different cities of the country. The project has been able to achieve a significant impact in the development of production technologies, but still, there is room for further improvement in processing, packaging, and marketing level. The core intervention of the current project to develop some entrepreneurs for branding, packaging, promotion, and marketing while considering environment friendly practices. The present strategies will strengthen the knowledge and skills of the entrepreneurs for the production and marketing of their products, maintaining worldwide accepted compliance system for easy access to the global market.Keywords: aloe vera, herbs and shrubs, market, interventions
Procedia PDF Downloads 96486 Fruit of the General Status of Usak Provicce District of Sivasli
Authors: Ayşen Melda Çolak, Volkan Okatan, Ercan Yıldız
Abstract:
In our country, fruit production was determined as 17.2 million tons in 2011 according to official data. Turkey fig, apricot, cherry and quince production ranks first in the world. Almost all the regions of our country, despite the growing of fruit 54% of the total fruit production occur in the Mediterranean and the Aegean Region. However, fruit production in the country is consumed in the domestic market and export rates are often very low. In this study, a questionnaire to 100 farmers face-to-face interview. According to the survey, 40% of those in fruit and 7 da of 7 hectares land are small. 30% of soil testing for manufacturers, testing for 20% of the water. Manufacturers who deliberately fertilization rate of only 10%.Keywords: fruit, generation, potential, Sivasli survey
Procedia PDF Downloads 261485 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate
Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar
Abstract:
Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.Keywords: chickpea, cultivars, seed rate, sowing time
Procedia PDF Downloads 443484 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry
Authors: Parashram Jakappa Patil
Abstract:
India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.Keywords: cashew, processing technology, packaging, international trade, change
Procedia PDF Downloads 422483 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves
Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar
Abstract:
Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly
Procedia PDF Downloads 252482 Effect of Seasons and Storage Methods on Seed Quality of Slender Leaf (Crotalaria Sp.) in Western Kenya
Authors: Faith Maina
Abstract:
Slender leaf (Crotalaria brevidens and Crotalaria ochroleuca), African indigenous vegetables, are an important source of nutrients, income and traditional medicines in Kenya. However, their production is constrained by poor quality seed, due to lack of standardized agronomic and storage practices. Factors that affect the quality of seed in storage include the duration of storage, seed moisture, temperature, relative humidity, oxygen pressure during storage, diseases, and pests. These factors vary with the type of storage method used. The aim of the study was to investigate the effect of various storage methods on seed quality of slender leaf and recommend the best methods of seed storage to the farmers in Western Kenya. Seeds from various morphotypes of slender leaf that had high germination percentage (90%) were stored in pots, jars, brown paper bags and polythene bags in Kakamega and Siaya. Other seeds were also stored in a freezer at the University of Eldoret. In Kakamega County average room temperature was 23°C and relative humidity was 85% during the storage period of May to July 2006. Between December and February 2006 the average room temperature was 26°C while relative humidity was 80% in the same county. In Siaya County, the average room temperature was 25°C and relative humidity was 80% during storage period of May to July 2006. In the same county, the average temperature was 28°C and relative humidity 65% during the period of December and February 2006. Storage duration was 90 days for each season. Seed viability and vigour, was determined for each storage method. Data obtained from storage experiments was subjected to ANOVA and T-tests using Statistical Analysis Software (SAS). Season of growth and storage methods significantly influenced seed quality in Kakamega and Siaya counties. Seeds from the long rains season had higher seed quality than those grown during the short rains season. Generally, seeds stored in pots, brown paper bags, jars and freezer had higher seed quality than those stored in polythene bags. It was concluded that in order to obtain high-quality seeds farmers should store slender leaf seeds in pots or brown paper bags or plastic jars or freezer.Keywords: Crotalaria sp, seed, quality, storage
Procedia PDF Downloads 200481 Impact of Integrated Watershed Management Programme Based on Four Waters Concept: A Case Study of Sali Village, Rajasthan State of India
Authors: Garima Sharma, R. N. Sharma
Abstract:
Integrated watershed management programme based on 'Four Water Concept' was implemented in Sali village, in Jaipur District, Rajasthan State of India . The latitude 26.7234486 North and longitude 75.023876 East are the geocoordinate of the Sali. 'Four Waters Concept' is evolved by integrating the 'Four Waters', viz. rain water, soil moisture, ground water and surface water This methodology involves various water harvesting techniques to prevent the runoff of water by treatment of catchment, proper utilization of available water harvesting structures, renovation of the non-functional water harvesting structures and creation of new water harvesting structures. The case study included questionnaire survey from farmers and continuous study of village for two years. The total project area is 6153 Hac, and the project cost is Rs. 92.25 million. The sanctioned area of Sali Micro watershed is 2228 Hac with an outlay of Rs. 10.52 million. Watershed treatment activities such as water absorption trench, continuous contour trench, field bunding, check dams, were undertaken on agricultural lands for soil and water conservation. These measures have contributed in preventing runoff and increased the perennial availability of water in wells. According to the survey, water level in open wells in the area has risen by approximately 5 metres after the introduction of water harvesting structures. The continuous availability of water in wells has increased the area under irrigation and helped in crop diversification. Watershed management activities have brought the changes in cropping patterns and crop productivity. It helped in transforming 567 Hac culturable waste land into culturable arable land in the village. The farmers of village have created an additional income from the increased crop production. The programme also assured the availability of water during peak summers for the day to day activities of villagers. The outcomes indicate that there is positive impact of watershed management practices on the water resource potential as well the crop production of the area. This suggests that persistent efforts in this direction may lead to sustainability of the watershed.Keywords: four water concept, groundwater potential, irrigation potential, watershed management
Procedia PDF Downloads 357480 Seasonal Lambing in Crossbred of Katahdin Ewes in Tropical Regions of Chiapas, Mexico
Authors: Juan C. Martínez-Alfaro, Aracely Zúñiga, Fernando Ruíz-Zarate
Abstract:
In recent years, the Katahdin sheep breeds have been one of the breeds with greater acceptance by sheep farmers in southwestern Mexico. The Hair Sheep breeds from tropical latitudes (16° to 21° North Latitude) show low estrus activity from January to May. By contrast, these breeds of sheep exhibit high estrus activity from August to December. However, the reproductive management of Hair Sheep crossbred is very limited, independently of the socioeconomic levels of sheep farmers. Thus, in crossbred of Hair Sheep, occurrence of lambing is greater in autumn (84%) than spring (16%). In this sense, the aim of this study was to determine the lambing in Crossbred of Katahdin sheep during different seasons of the year. The Hypothesis was that in crossbred of Katahdin sheep, the lambing period has a behavior seasonal in the Southwestern Mexico. The study design consisted in evaluating the lambing proportion in one herds of Katahdin ewes crossbred during one year (October 1st, 2015 to October 1st, 2016). The study was realized in a farm located in the municipality of Jiquipilas, in the State of Chiapas, Mexico (16° North Latitude). A total of 40 female sheep homogeneous in terms of physical condition, age and physiological state were selected; and they were fed in grazing continuous, mainly with Africa star grass (Cynodon lemfuensis) and they are provided with water and mineral salts ad libitum; during the dry season, the ewes were supplemented with a diet of maize and sorghum, and the reproductive management was continuous mating. The lambing proportion was analyzed by chi-squared test, using SAS statistical software. The proportion of Katahdin ewes crossbred that lambed during the study period was high (100%; 40/40), the prolificacy was 1.42 (lamb/lambing). The proportion of lambing was higher (P<0.05) in autumn (67.5%; 27/40), than winter, spring and summer (32.5%; 13/40; 0%; 0/40; 0%; 0/40; respectively). The proportion of lambing was greater (P<0.05) in November (50%; 20/40), compared to October, December and January (2.5%; 1/40; 27.5%; 11/40; 20%; 8/40, respectively). The results are consistent with the fact that in the Hair Sheep Breeds, the lambing appears behave seasonally. The most important finding is that the lambing period in the crossbred of Katahdin Sheep is similar to the crossbred of Hair Sheep in tropical regions of Mexico. Therefore, the period of greater sexual activity occurs in the spring season. In conclusion, the period of lambing in crossbred of Katahdin ewes appears behave seasonally. Further researches to assess the ovarian activity in different breeds of Hair Ewes are under assessment.Keywords: Katahdin ewes, lambing, prolificacy, seasonality
Procedia PDF Downloads 263479 Digital Adoption of Sales Support Tools for Farmers: A Technology Organization Environment Framework Analysis
Authors: Sylvie Michel, François Cocula
Abstract:
Digital agriculture is an approach that exploits information and communication technologies. These encompass data acquisition tools like mobile applications, satellites, sensors, connected devices, and smartphones. Additionally, it involves transfer and storage technologies such as 3G/4G coverage, low-bandwidth terrestrial or satellite networks, and cloud-based systems. Furthermore, embedded or remote processing technologies, including drones and robots for process automation, along with high-speed communication networks accessible through supercomputers, are integral components of this approach. While farm-level adoption studies regarding digital agricultural technologies have emerged in recent years, they remain relatively limited in comparison to other agricultural practices. To bridge this gap, this study delves into understanding farmers' intention to adopt digital tools, employing the technology, organization, environment framework. A qualitative research design encompassed semi-structured interviews, totaling fifteen in number, conducted with key stakeholders both prior to and following the 2020-2021 COVID-19 lockdowns in France. Subsequently, the interview transcripts underwent thorough thematic content analysis, and the data and verbatim were triangulated for validation. A coding process aimed to systematically organize the data, ensuring an orderly and structured classification. Our research extends its contribution by delineating sub-dimensions within each primary dimension. A total of nine sub-dimensions were identified, categorized as follows: perceived usefulness for communication, perceived usefulness for productivity, and perceived ease of use constitute the first dimension; technological resources, financial resources, and human capabilities constitute the second dimension, while market pressure, institutional pressure, and the COVID-19 situation constitute the third dimension. Furthermore, this analysis enriches the TOE framework by incorporating entrepreneurial orientation as a moderating variable. Managerial orientation emerges as a pivotal factor influencing adoption intention, with producers acknowledging the significance of utilizing digital sales support tools to combat "greenwashing" and elevate their overall brand image. Specifically, it illustrates that producers recognize the potential of digital tools in time-saving and streamlining sales processes, leading to heightened productivity. Moreover, it highlights that the intent to adopt digital sales support tools is influenced by a market mimicry effect. Additionally, it demonstrates a negative association between the intent to adopt these tools and the pressure exerted by institutional partners. Finally, this research establishes a positive link between the intent to adopt digital sales support tools and economic fluctuations, notably during the COVID-19 pandemic. The adoption of sales support tools in agriculture is a multifaceted challenge encompassing three dimensions and nine sub-dimensions. The research delves into the adoption of digital farming technologies at the farm level through the TOE framework. This analysis provides significant insights beneficial for policymakers, stakeholders, and farmers. These insights are instrumental in making informed decisions to facilitate a successful digital transition in agriculture, effectively addressing sector-specific challenges.Keywords: adoption, digital agriculture, e-commerce, TOE framework
Procedia PDF Downloads 60478 Wheat Production and Market in Afghanistan
Authors: Fayiz Saifurahman, Noori Fida Mohammad
Abstract:
Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production.Keywords: Afghanistan, wheat, production , import
Procedia PDF Downloads 167