Search results for: Bill Wang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1479

Search results for: Bill Wang

1029 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 187
1028 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses

Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin

Abstract:

Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.

Keywords: problem solving-driven, MOOCs, teaching art, learning flow;

Procedia PDF Downloads 363
1027 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
1026 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
1025 Research on the Public Policy of Vehicle Restriction under Traffic Control

Authors: Wang Qian, Bian Cheng Xiang

Abstract:

In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.

Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate

Procedia PDF Downloads 160
1024 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity

Authors: Wang, Kuei-Ing, Jou-Fan Shih

Abstract:

This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.

Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity

Procedia PDF Downloads 508
1023 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 122
1022 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 246
1021 Image Reconstruction Method Based on L0 Norm

Authors: Jianhong Xiang, Hao Xiang, Linyu Wang

Abstract:

Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.

Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction

Procedia PDF Downloads 115
1020 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
1019 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 198
1018 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges

Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo

Abstract:

With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.

Keywords: cable, cable-stayed bridge, long-span, statistical analysis

Procedia PDF Downloads 633
1017 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys

Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng

Abstract:

Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.

Keywords: oxide coating, PEO, tribological properties, ZA27

Procedia PDF Downloads 495
1016 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province

Authors: Chengyuan Zhu, Zhu Wang

Abstract:

With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.

Keywords: rural construction, rural human settlements, micro-activation, organic renewal

Procedia PDF Downloads 231
1015 Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for a Microwave Conveyor-Belt Drier

Authors: Sang-Hyeon Bae, Sung-Yeon Kim, Min-Gyo Jeong, Ji-Hong Kim, Wang-Sang Lee

Abstract:

Traditional heating methods such as electric ovens or steam heating are slow and not very efficient. For continuously heating the objects, a microwave conveyor-belt drier is widely used in the industrial microwave heating systems. However, there is a problem in which electromagnetic wave leaks toward outside of the heating cavity through the insertion opening. To achieve the prevention of the leakage of microwaves and improved heating characteristics, the corrugated rectangular waveguide at the entrance and exit openings of a microwave conveyor-belt drier is proposed and its electromagnetic interference (EMI) shielding effectiveness is analyzed and verified. The corrugated waveguides in the proposed microwave heating system achieve at least 20 dB shielding effectiveness while ensuring a sufficient height of the openings.

Keywords: corrugated, electromagnetic wave, microwave conveyor-belt drier, rectangular waveguide, shielding effectiveness

Procedia PDF Downloads 516
1014 The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test

Authors: Xiaohui Wang, Liwei Sun, Guilin Zhang

Abstract:

Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB.

Keywords: printed circuit board, life assessment, insulation resistance, coating material

Procedia PDF Downloads 533
1013 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method

Authors: Chong Wang, Alexandre Urbano Hoffmann

Abstract:

Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.

Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction

Procedia PDF Downloads 426
1012 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.

Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction

Procedia PDF Downloads 148
1011 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
1010 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 460
1009 Titanium-Aluminium Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material.

Keywords: titanium-aluminum oxide, plasma electrolytic oxidation, corrosion, wear, thermal property

Procedia PDF Downloads 356
1008 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 113
1007 Enhancing goal Achivement through Improved Communication Skills

Authors: Lin Xie, Yang Wang

Abstract:

An extensive body of research studies suggest that students, teachers, and supervisors can enhance the likelihood of reaching their goals by improving their communication skills. It is highly important to learn how and when to provide different kinds of feedback, e.g. anticipatory, corrective and positive) will gain better result and higher morale. The purpose of this mixed methods research is twofold: 1) To find out what factors affect effective communication among different stakeholders and how these factors affect student learning 2) What are the good practices for improving communication among different stakeholders and improve student achievement. This presentation first begins with an introduction to the recent research on Marshall’s Nonviolent Communication Techniques (NVC), including four important components: observations, feelings, needs, requests. These techniques can be effectively applied at all levels of communication. To develop an in-depth understanding of the relationship among different techniques within, this research collected, compared, and combined qualitative and quantitative data to better improve communication and support student learning.

Keywords: communication, education, language learning, goal achievement, academic success

Procedia PDF Downloads 71
1006 The Impact of the “Cold Ambient Color = Healthy” Intuition on Consumer Food Choice

Authors: Yining Yu, Bingjie Li, Miaolei Jia, Lei Wang

Abstract:

Ambient color temperature is one of the most ubiquitous factors in retailing. However, there is limited research regarding the effect of cold versus warm ambient color on consumers’ food consumption. This research investigates an unexplored lay belief named the “cold ambient color = healthy” intuition and its impact on food choice. We demonstrate that consumers have built the “cold ambient color = healthy” intuition, such that they infer that a restaurant with a cold-colored ambiance is more likely to sell healthy food than a warm-colored restaurant. This deep-seated intuition also guides consumers’ food choices. We find that using a cold (vs. warm) ambient color increases the choice of healthy food, which offers insights into healthy diet promotion for retailers and policymakers. Theoretically, our work contributes to the literature on color psychology, sensory marketing, and food consumption.

Keywords: ambient color temperature, cold ambient color, food choice, consumer wellbeing

Procedia PDF Downloads 142
1005 The Strategy of Traditional Religious Culture Tourism: Taking Taiwan Minhsiung Infernal Lord Festival for Example

Authors: Ching-Yi Wang

Abstract:

The purpose of this study is to explore strategies for integrate Minhsiung environments and cultural resources for Infernal Lord Festival. Minhsiung Infernal Lord Festival is one of the famous religious event in Chia-Yi County, Taiwan. This religious event and the life of local residents are inseparable. Minhsiung Infernal Lord Festival has a rich cultural ceremonies meaning and sentiment of local concern. This study apply field study, document analysis and interviews to analyze Minhsiung Township’s featured attractions and folklore events. The research results reveal the difficulties and strategies while incorporating culture elements into culture tourism. This study hopes to provide innovative techniques for the purpose of prolonging the feasibility of future development of the tradition folk culture.

Keywords: Taiwan folk culture, Minhsiung Infernal Lord Festival, religious tourism, folklore, cultural tourism

Procedia PDF Downloads 340
1004 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 70
1003 Research of Acoustic Propagation within Marine Riser in Deepwater Drilling

Authors: Xiaohui Wang, Zhichuan Guan, Roman Shor, Chuanbin Xu

Abstract:

Early monitoring and real-time quantitative description of gas intrusion under the premise of ensuring the integrity of the drilling fluid circulation system will greatly improve the accuracy and effectiveness of deepwater gas-kick monitoring. Therefore, in order to study the propagation characteristics of ultrasonic waves in the gas-liquid two-phase flow within the marine riser, in this paper, a numerical simulation method of ultrasonic propagation in the annulus of the riser was established, and the credibility of the numerical analysis was verified by the experimental results of the established gas intrusion monitoring simulation experimental device. The numerical simulation can solve the sound field in the gas-liquid two-phase flow according to different physical models, and it is easier to realize the single factor control. The influence of each parameter on the received signal can be quantitatively investigated, and the law with practical guiding significance can be obtained.

Keywords: gas-kick detection, ultrasonic, void fraction, coda wave velocity

Procedia PDF Downloads 157
1002 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 514
1001 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
1000 TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System

Authors: J. R. Wang, Y. Chiang, W. Y. Li, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen

Abstract:

The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods.

Keywords: BWR, TRACE, FRAPTRAN, dry-storage

Procedia PDF Downloads 519