Search results for: heavy metal pollution
356 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics
Authors: Umedov Mekhroz, Griaznova Svetlana
Abstract:
In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy
Procedia PDF Downloads 91355 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants
Authors: Zarina Chokparova, Ighor Uzhinsky
Abstract:
Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture
Procedia PDF Downloads 144354 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester
Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell
Abstract:
Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.Keywords: size distribution, traffic emissions, UFP, urban area
Procedia PDF Downloads 333353 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake
Authors: Zhang Xin
Abstract:
Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS
Procedia PDF Downloads 132352 Climate Change Impact on Whitefly (Bemisia tabaci) Population Infesting Tomato (Lycopersicon esculentus) in Sub-Himalayan India and Their Sustainable Management Using Biopesticides
Authors: Sunil Kumar Ghosh
Abstract:
Tomato (Lycopersicon esculentus L.) is an annual vegetable crop grown in the sub-Himalayan region of north east India throughout the year except rainy season in normal field cultivation. The crop is susceptible to various insect pests of which whitefly (Bemesia tabaci Genn.) causes heavy damage. Thus, a study on its occurrence and sustainable management is needed for successful cultivation. The pest was active throughout the growing period. During 38th standard week to 41st standard week that is during 3rd week of September to 2nd week of October minimum population was observed. The maximum population level was maintained during 11th standard week to 18th standard week that is during 2nd week of March to 3rd week of March with peak population (0.47/leaf) was recorded. Weekly population counts on white fly showed non-significant negative correlation (p=0.05) with temperature and weekly total rainfall where as significant negative correlation with relative humidity. Eight treatments were taken to study the management of the white fly pest such as botanical insecticide azadirachtin botanical extracts, Spilanthes paniculata flower, Polygonum hydropiper L. flower, tobacco leaf and garlic and mixed formulation like neem and floral extract of Spilanthes were evaluated and compared with the ability of acetamiprid. The insectide acetamiprid was found most lethal against whitefly providing 76.59% suppression, closely followed by extracts of neem + Spilanthes providing 62.39% suppression. Spectophotometric scanning of crude methanolic extract of Polygonum flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals like Spirilloxanthin, Quercentin diglycoside, Quercentin 3-O-rutinoside, Procyanidin B1 and Isorhamnetin 3-O-rutinoside. These chemicals are responsible for pest control. Spectophotometric scanning of crude methanolic extract of Spilanthes flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals of which polysulphide compounds are important and responsible of pest control. Neem and Spilanthes individually did not produce good results but when used as a mixture they recorded better results. Highest yield (30.15 t/ha) were recorded from acetamiprid treated plots followed by neem + Spilanthes (27.55 t/ha). Azadirachtin and Plant extracts are biopesticides having less or no hazardous effects on human health and environment. Thus they can be incorporated in IPM programmes and organic farming in vegetable cultivation.Keywords: biopesticides, organic farming, seasonal fluctuation, vegetable IPM
Procedia PDF Downloads 314351 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling
Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo
Abstract:
Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery
Procedia PDF Downloads 81350 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method
Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures
Procedia PDF Downloads 296349 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022
Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo
Abstract:
This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism
Procedia PDF Downloads 51348 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing
Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.
Abstract:
Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target
Procedia PDF Downloads 334347 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples
Authors: Ahmed S. Fayed, Umima M. Mansour
Abstract:
Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol
Procedia PDF Downloads 220346 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 252345 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 240344 Environmental Monitoring by Using Unmanned Aerial Vehicle (UAV) Images and Spatial Data: A Case Study of Mineral Exploitation in Brazilian Federal District, Brazil
Authors: Maria De Albuquerque Bercot, Caio Gustavo Mesquita Angelo, Daniela Maria Moreira Siqueira, Augusto Assucena De Vasconcellos, Rodrigo Studart Correa
Abstract:
Mining is an important socioeconomic activity in Brazil although it negatively impacts the environment. Mineral operations cause irreversible changes in topography, removal of vegetation and topsoil, habitat destruction, displacement of fauna, loss of biodiversity, soil erosion, siltation of watercourses and have potential to enhance climate change. Due to the impacts and its pollution potential, mining activity in Brazil is legally subjected to environmental licensing. Unlicensed mining operations or operations that not abide to the terms of an obtained license are taken as environmental crimes in the country. This work reports a case analyzed in the Forensic Institute of the Brazilian Federal District Civil Police. The case consisted of detecting illegal aspects of sand exploitation from a licensed mine in Federal District, nearby Brasilia city. The fieldwork covered an area of roughly 6 ha, which was surveyed with an unmanned aerial vehicle (UAV) (PHANTOM 3 ADVANCED). The overflight with UAV took about 20 min, with maximum flight height of 100 m. 592 UAV georeferenced images were obtained and processed in a photogrammetric software (AGISOFT PHOTOSCAN 1.1.4), which generated a mosaic of geo-referenced images and a 3D model in less than six working hours. The 3D model was analyzed in a forensic software for accurate modeling and volumetric analysis. (MAPTEK I-SITE FORENSIC 2.2). To ensure the 3D model was a true representation of the mine site, coordinates of ten control points and reference measures were taken during fieldwork and compared to respective spatial data in the model. Finally, these spatial data were used for measuring mining area, excavation depth and volume of exploited sand. Results showed that mine holder had not complied with some terms and conditions stated in the granted license, such as sand exploration beyond authorized extension, depth and volume. Easiness, the accuracy and expedition of procedures used in this case highlight the employment of UAV imagery and computational photogrammetry as efficient tools for outdoor forensic exams, especially on environmental issues.Keywords: computational photogrammetry, environmental monitoring, mining, UAV
Procedia PDF Downloads 322343 Assessing the Contribution of Informal Buildings to Energy Inefficiency in Kenya: A Case of Mukuru Slums
Authors: Bessy Thuranira
Abstract:
Buildings, as they are designed and used, may contribute to serious environmental problems because of excessive consumption of energy and other natural resources. Buildings in the informal settlements particularly, due to their unplanned physical structure and design, have significantly contributed the global energy problematic scenario typified by high-level inefficiencies. Energy used in buildings in Africa is estimated to be the highest of the total national electricity consumption. Over the last decade, assessments of energy consumption and efficiency/inefficiency has focused on formal and modern buildings. This study seeks to go off the beaten path, by focusing on energy use in informal settlements. Operationally, it sought to establish the contribution of informal buildings in the overall energy consumption in the city and the country at large. This study was carried out in Mukuru kwa Reuben informal settlement where there is distinct manifestation of different settlement morphologies within a small locality. The research narrowed down to three villages (Mombasa, Kosovo and Railway villages) within the settlement, that were representative of the different slum housing typologies. Due to the unpredictability nature and informality in slums, this study takes a multi-methodology approach. Detailed energy audits and measurements are carried out to predict total building consumption, and document building design and envelope, typology, materials and occupancy levels. Moreover, the study uses semi-structured interviews and to access energy supply, cost, access and consumption patterns. Observations and photographs are also used to shed more light on these parameters. The study reveals the high energy inefficiencies in slum buildings mainly related to sub-standard equipment and appliances, building design and settlement layout, poor access and utilization/consumption patterns of energy. The impacts of this inefficiency are high economic burden to the poor, high levels of pollution, lack of thermal comfort and emissions to the environment. The study highlights a set of urban planning and building design principles that can be used to retrofit slums into more energy efficient settlements. The study explores principles of responsive settlement layouts/plans and appropriate building designs that use the beneficial elements of nature to achieve natural lighting, natural ventilation, and solar control to create thermally comfortable, energy efficient, and environmentally responsive buildings/settlements. As energy efficiency in informal settlements is a relatively less explored area of efficiency, it requires further research and policy recommendations, for which this paper will set a background.Keywords: energy efficiency, informal settlements, renewable energy, settlement layout
Procedia PDF Downloads 136342 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 89341 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana
Authors: Obed Asamoah
Abstract:
Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.Keywords: companies, deforestation, forest, Ghana, timber
Procedia PDF Downloads 207340 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress
Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood
Abstract:
Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop
Procedia PDF Downloads 46339 Unravelling Green Entrepreneurial: Insights From a Hybrid Systematic Review
Authors: Shivani, Seema Sharma, Shveta Singh, Akriti Chandra
Abstract:
Business activities contribute to various environmental issues such as deforestation, waste generation, and pollution. Therefore, integration of environmental concerns within manufacturing operations is vital for the long-term survival of businesses. In this context, green entrepreneurial orientation (GEO) is recognized as a firm-level internal strategy to mitigate ecological damage through initiating green business practices. However, despite the surge in research on GEO in recent years, ambiguity remains on the genesis of GEO and the mechanism through which GEO impacts various organizational outcomes. This prompts an examination of the ongoing scholarly discourse about GEO and its domain knowledge structure within the entrepreneurship literature using bibliometric analysis and the Theories, Contexts, Characteristics, and Methodologies (TCCM) framework. The authors analyzed a dataset comprising 73 scientific documents sourced from the Scopus and Web of Science database from 2005 to 2024 to provide insights into the publication trends, prominent journals, authors, articles, countries' collaboration, and keyword analysis in GEO research. The findings indicate that the number of relevant papers and citations has increased consistently, with authors from China being the main contributors. The articles are mainly published in Business Strategy and the Environment and Sustainability. Dynamic capability view is the dominant framework applied in the GEO domain, with large manufacturing firms and SMEs constituting the majority of the sample. Further, various antecedents of GEO have been identified at an organizational level to which managers can focus their attention. The studies have used various contextual factors to explain when GEO translates into superior organizational outcomes. The Method analysis reveals that PLS-SEM is the commonly used approach for analyzing the primary data collected through surveys. Moreover, the content analysis indicates four emerging research frontiers identified as unidimensional vs. multidimensional perspectives of GEO, typologies of green innovation, environmental management in the hospitality industry, and tech-savvy sustainability in the agriculture sector. This study is one of the earliest to apply quantitative methods to synthesize the extant literature on GEO. This research holds relevance for management practice due to the escalating levels of carbon emissions, energy consumption, and waste discharges observed in recent years, resulting in increased apprehension about climate change.Keywords: green entrepreneurship, sustainability, SLR, TCCM
Procedia PDF Downloads 19338 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka
Abstract:
Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment
Procedia PDF Downloads 360337 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression
Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele
Abstract:
Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering
Procedia PDF Downloads 40336 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments
Authors: Manjinder Singh, Jasvinder Singh
Abstract:
Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite
Procedia PDF Downloads 527335 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 383334 Factors Influencing the Adoption of Interpersonal Communication Media to Maximize Business Competitiveness among Small and Medium Enterprises in Hong Kong: Industry Types and Entrepreneur Characteristics
Authors: Olivine Lo
Abstract:
Small- and Medium-Sized Enterprises (SMEs) consist of a broad variety of businesses, ranging from small grocery shops to manufacturing concerns. Some are dynamic and innovative, while others are more traditional. The definition of SMEs varies by country but is most determined by the number of employees, though business assets and sales revenues are alternative measures. There are eight main types of SME industries in Hong Kong: garment, electronics, plastics, metal and machinery, trading and logistics, building, manufacturing, and service industries. Information exchange is a key goal of human communication, and communicators have used a variety of media to maintain relationships through traditional face-to-face interactions and written forms like letters and faxes. With the advancement of mediated-interpersonal communication media from telephone to synchronic online tools like email, instant messaging, voice messaging, and video conferencing for sustaining relationships, particularly enabling geographically distanced relationships. Although these synchronous tools are gaining popularity, they are facilitating relationship maintenance in everyday life and complementing rather than replacing the more conventional face-to-face interactions. This study will test if there are any variances in effects by industry type among Hong Kong SMEs. The competitiveness of the business environment refers to the competition faced by a business within its particular industry. The more intense the competition in a given sector, the greater the potential for strategic uses of specific needs in a business. Both internal organization characteristics and external environments may affect firm performance and financial resources. The level of competitiveness within an industry will be a more reliable indicator to show how Hong Kong SMEs are striving to achieve their business goals using different techniques in their communication media preferences, rather than mere classification by industry type. This study thus divides the competitiveness of the business environment into internal and external: (1) the internal environment competition is the inherent competitiveness of the products or services provided by the SMEs, whereas (2) the external environment competition includes the economic and political realities and competitors joining the market. This study will test various organizational characteristics and competitiveness of the business environment to predict entrepreneurs’ communication media preferences.Keywords: competitiveness of business environment, small- and medium-sized enterprises, organizational characteristics, communication media preference
Procedia PDF Downloads 36333 Green Organic Chemistry, a New Paradigm in Pharmaceutical Sciences
Authors: Pesaru Vigneshwar Reddy, Parvathaneni Pavan
Abstract:
Green organic chemistry which is the latest and one of the most researched topics now-a- days has been in demand since 1990’s. Majority of the research in green organic chemistry chemicals are some of the important starting materials for greater number of major chemical industries. The production of organic chemicals has raw materials (or) reagents for other application is major sector of manufacturing polymers, pharmaceuticals, pesticides, paints, artificial fibers, food additives etc. organic synthesis on a large scale compound to the labratory scale, involves the use of energy, basic chemical ingredients from the petro chemical sectors, catalyst and after the end of the reaction, seperation, purification, storage, packing distribution etc. During these processes there are many problems of health and safety for workers in addition to the environmental problems caused there by use and deposition as waste. Green chemistry with its 12 principles would like to see changes in conventional way that were used for decades to make synthetic organic chemical and the use of less toxic starting materials. Green chemistry would like to increase the efficiency of synthetic methods, to use less toxic solvents, reduce the stage of synthetic routes and minimize waste as far as practically possible. In this way, organic synthesis will be part of the effort for sustainable development Green chemistry is also interested for research and alternatives innovations on many practical aspects of organic synthesis in the university and research labaratory of institutions. By changing the methodologies of organic synthesis, health and safety will be advanced in the small scale laboratory level but also will be extended to the industrial large scale production a process through new techniques. The three key developments in green chemistry include the use of super critical carbondioxide as green solvent, aqueous hydrogen peroxide as an oxidising agent and use of hydrogen in asymmetric synthesis. It also focuses on replacing traditional methods of heating with that of modern methods of heating like microwaves traditions, so that carbon foot print should reduces as far as possible. Another beneficiary of this green chemistry is that it will reduce environmental pollution through the use of less toxic reagents, minimizing of waste and more bio-degradable biproducts. In this present paper some of the basic principles, approaches, and early achievements of green chemistry has a branch of chemistry that studies the laws of passing of chemical reactions is also considered, with the summarization of green chemistry principles. A discussion about E-factor, old and new synthesis of ibuprofen, microwave techniques, and some of the recent advancements also considered.Keywords: energy, e-factor, carbon foot print, micro-wave, sono-chemistry, advancement
Procedia PDF Downloads 311332 Rural Farmers-Herdsmen Conflicts, State Mediation Failure and Prospects of Traditional Institutions’ Intervention in Southwest Nigeria
Authors: Grace Adebo
Abstract:
Rural Farmers-herdsmen conflicts have resulted in a large number of causalities in many parts of Nigeria. Herds of cattle have died, while farmers recorded inestimable losses of their crops and harvests. The overall consequences have impacted negatively on food security across the country. There are divided opinions by scholars, agricultural experts and conflict analysts on the root causes of the conflicts and why traditional institutional interventions are ineffective in resolving the crisis. The study, therefore, aims to investigate the fundamentality of the conflicts’ causes in Southwest Nigeria and the correlates between traditional institutional authorities’ intervention and farmers-herdsmen conflicts in Southwest Nigeria. A structured interview schedule and focus group discussion were employed to elicit information from 180 farmers and 48 herdsmen selected through a multistage sampling procedure from the conflict zones in Southwest Nigeria. Collected data were analyzed using frequency counts, percentages, means and the Relative Importance Index (RII). The study found that climate change effects, farmland encroachment, crop damage, theft, and competition for land and water resources and pollution were the root causes of the violent herders-rural farmer’s clashes. The quest for wealth acquisition by some traditional rulers and some notable individuals in the conflict neighborhoods, occasioned tribal-mix herds possession and, thus undermining local institutional interventions and perverting justice through weak conflict resolution strategies, therefore, fueling further conflicts. Most farmers in the conflict zones have abandoned their farms for fear of death. This coupled with physical, social, economic and psychological consequences have deepened food insecurity and impaired the economic conditions of the herdsmen and the farmers. Currently, there are no mutually established mediation mechanisms as most states are opposed to the enactment of grazing laws to protect territorial encroachments of lands and subsequent multiplication of the herdsmen. It is suggested that government and Non-Governmental Organisation (NGOs) should encourage a functional stakeholder's forum for sustainable conflict resolution and establish a compensation scheme for losses incurred while extension agents are equipped with knowledge on conflict management strategies for peace attainment with the envisioned goal of achieving sustainable livelihoods and food security in Southwest Nigeria.Keywords: conflict resolution, food security, herdsmen-farmers conflict, sustainable livelihoods, traditional institutions
Procedia PDF Downloads 122331 A Preliminary Finding Regarding Nutrition Information Needs among Family Physicians in Turkey
Authors: F. Nur Baran Aksakal, Özge Dinç, H. Tanju Besler, Begüm Mutuş, Özlem Üliç Çatar, Orhan Aydoğdu, Serhat Ünal
Abstract:
Healthy eating habits are associated not only with the newborn, child, and maternal health but also with longer life expectancy by acting as a protective factor against non-communicable diseases such as obesity, diabetes, cardiovascular diseases, and cancer. The role of nutrition in medical education is to provide information about the relationship between healthy nutrition and malnutrition as well as diet-related non-communicable diseases. Considering the information pollution experienced in the field of nutrition and health in the society, it is seen that more than half of the population receives information from family physicians as the closest counseling unit. However, postgraduate nutrition education programs for physicians and other health professionals who wish to improve their current knowledge of the role of nutrition communication in the prevention and management of chronic diseases are limited worldwide. However, nutrition courses are either not included in the undergraduate medical education curriculum of physicians or they are insufficient. Based on this need, the main aim of the study group was to develop a "Nutrition and Nutrition Communication Training for Physicians" program that would be conducted in cooperation with the Sabri Ülker Foundation and the Federation of Family Physicians Associations (AHEF). This program is the first online nutrition and nutrition communication information platform for physicians in Turkey. This program aims to present the concept of adequate and balanced nutrition to physicians, the importance of nutrition in diseases with scientific data, and to gain communication skills that may be necessary while transferring scientific information to the public. A needs assessment questionnaire was applied to identify pre-program training needs. A study plan was made to allow the participation of all family physicians in the population, and a complete inventory was targeted. In other words, we aimed to reach the whole source without taking a section of the population. Participation in the training is based on volunteerism. The needs assessment study is conducted using 25,102 family physicians for whom email addresses are available. The online questionnaire was sent to all the family physicians with a reminder email one week after the first one, and 1308 responded. Considering the topics determined, a training program was prepared for family physicians under eight online training titles, starting in March 2022, and conducted once every two weeks. The number of audience members present at each session was between 1217 and 1673, and a minimum of 17 and a maximum of 53 questions were received in each session. We strongly believe that to prevent individuals' health problems and to have better control over chronic diseases, the information level of physicians should be increased via these kinds of interventions, and better collaboration between family physicians and dieticians should be established.Keywords: nutrition communication, nutrition training, communication, nutrition
Procedia PDF Downloads 106330 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex
Authors: Lishuang Ma
Abstract:
Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexesKeywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling
Procedia PDF Downloads 147329 A Comprehensive Study on Freshwater Aquatic Life Health Quality Assessment Using Physicochemical Parameters and Planktons as Bio Indicator in a Selected Region of Mahaweli River in Kandy District, Sri Lanka
Authors: S. M. D. Y. S. A. Wijayarathna, A. C. A. Jayasundera
Abstract:
Mahaweli River is the longest and largest river in Sri Lanka and it is the major drinking water source for a large portion of 2.5 million inhabitants in the Central Province. The aim of this study was to the determination of water quality and aquatic life health quality in a selected region of Mahaweli River. Six sampling locations (Site 1: 7° 16' 50" N, 80° 40' 00" E; Site 2: 7° 16' 34" N, 80° 40' 27" E; Site 3: 7° 16' 15" N, 80° 41' 28" E; Site 4: 7° 14' 06" N, 80° 44' 36" E; Site 5: 7° 14' 18" N, 80° 44' 39" E; Site 6: 7° 13' 32" N, 80° 46' 11" E) with various anthropogenic activities at bank of the river were selected for a period of three months from Tennekumbura Bridge to Victoria Reservoir. Temperature, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 5-day Biological Oxygen Demand (BOD5), Total Suspended Solids (TSS), hardness, the concentration of anions, and metal concentration were measured according to the standard methods, as physicochemical parameters. Planktons were considered as biological parameters. Using a plankton net (20 µm mesh size), surface water samples were collected into acid washed dried vials and were stored in an ice box during transportation. Diversity and abundance of planktons were identified within 4 days of sample collection using standard manuals of plankton identification under the light microscope. Almost all the measured physicochemical parameters were within the CEA standards limits for aquatic life, Sri Lanka Standards (SLS) or World Health Organization’s Guideline for drinking water. Concentration of orthophosphate ranged between 0.232 to 0.708 mg L-1, and it has exceeded the standard limit of aquatic life according to CEA guidelines (0.400 mg L-1) at Site 1 and Site 2, where there is high disturbance by cultivations and close households. According to the Pearson correlation (significant correlation at p < 0.05), it is obvious that some physicochemical parameters (temperature, DO, TDS, TSS, phosphate, sulphate, chloride fluoride, and sodium) were significantly correlated to the distribution of some plankton species such as Aulocoseira, Navicula, Synedra, Pediastrum, Fragilaria, Selenastrum, Oscillataria, Tribonema and Microcystis. Furthermore, species that appear in blooms (Aulocoseira), organic pollutants (Navicula), and phosphate high eutrophic water (Microcystis) were found, indicating deteriorated water quality in Mahaweli River due to agricultural activities, solid waste disposal, and release of domestic effluents. Therefore, it is necessary to improve environmental monitoring and management to control the further deterioration of water quality of the river.Keywords: bio indicator, environmental variables, planktons, physicochemical parameters, water quality
Procedia PDF Downloads 110328 Effects of Plasma Technology in Biodegradable Films for Food Packaging
Authors: Viviane P. Romani, Bradley D. Olsen, Vilásia G. Martins
Abstract:
Biodegradable films for food packaging have gained growing attention due to environmental pollution caused by synthetic films and the interest in the better use of resources from nature. Important research advances were made in the development of materials from proteins, polysaccharides, and lipids. However, the commercial use of these new generation of sustainable materials for food packaging is still limited due to their low mechanical and barrier properties that could compromise the food quality and safety. Thus, strategies to improve the performance of these materials have been tested, such as chemical modifications, incorporation of reinforcing structures and others. Cold plasma is a versatile, fast and environmentally friendly technology. It consists of a partially ionized gas containing free electrons, ions, and radicals and neutral particles able to react with polymers and start different reactions, leading to the polymer degradation, functionalization, etching and/or cross-linking. In the present study, biodegradable films from fish protein prepared through the casting technique were plasma treated using an AC glow discharge equipment. The reactor was preliminary evacuated to ~7 Pa and the films were exposed to air plasma for 2, 5 and 8 min. The films were evaluated by their mechanical and water vapor permeability (WVP) properties and changes in the protein structure were observed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Potential cross-links and elimination of surface defects by etching might be the reason for the increase in tensile strength and decrease in the elongation at break observed. Among the times of plasma application tested, no differences were observed when higher times of exposure were used. The X-ray pattern showed a broad peak at 2θ = 19.51º that corresponds to the distance of 4.6Å by applying the Bragg’s law. This distance corresponds to the average backbone distance within the α-helix. Thus, the changes observed in the films might indicate that the helical configuration of fish protein was disturbed by plasma treatment. SEM images showed surface damage in the films with 5 and 8 min of plasma treatment, indicating that 2 min was the most adequate time of treatment. It was verified that plasma removes water from the films once weight loss of 4.45% was registered for films treated during 2 min. However, after 24 h in 50% of relative humidity, the water lost was recovered. WVP increased from 0.53 to 0.65 g.mm/h.m².kPa after plasma treatment during 2 min, that is desired for some foods applications which require water passage through the packaging. In general, the plasma technology affects the properties and structure of fish protein films. Since this technology changes the surface of polymers, these films might be used to develop multilayer materials, as well as to incorporate active substances in the surface to obtain active packaging.Keywords: fish protein films, food packaging, improvement of properties, plasma treatment
Procedia PDF Downloads 166327 Assessment of Urban Infrastructure and Health Using Principal Component Analysis and Geographic Information System: A Case of Ahmedabad, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Across the globe, there is a steady increase in people residing in urban areas. Due to this increase in urban population, urban health is affecting. The major issues identified like overcrowding, air pollution, unhealthy diet, inadequate infrastructure, poor solid waste management systems and insufficient access to health facilities, these issues are gradually clearly observed in health statistics of diseases and deaths rapidly increase in urban areas. Therefore, the present study aims to assess the health statistics and infrastructure services at urban areas to know the cause and effect between Infrastructure, its management and diseases (water borne). Most of the Indian cities have the municipal boundaries, which authorized by their respective municipal corporations and development authorities. Generally, cities have various zones under which municipal wards exist. The paper focuses on the city Ahmedabad, at Gujarat state. Ahmedabad Municipal Corporation (AMC) is divided into six zones namely Central zone, West zone, New-West zone, East zone, North zone, and South zone. Each zone includes various wards within it. Incidence of diseases in Ahmadabad which are linked to infrastructure was identified such as water-borne diseases. Later on, the occurrence of water-borne diseases at urban area was examined at each zone level. The study methodology follows four steps i.e. 1) Pre-Field literature study: Study on Sewerage system in urban areas and its best practices and public health status globally and Indian scenario; 2) Field study: Data collection and interviews of stakeholders regarding heal status and issues at each zone and ward level; 3) Post field: Data analysis with qualitative description of each ward of zones, followed by correlation coefficient analysis between sewerage coverage, diseases and density of each ward using geographic information system mapping (GIS); 4) Identification of reasons: Affected health on each of zone and wards followed by correlation analysis on each reason. The results reveal that the health conditions in Ahmedabad municipal zones or boundaries are effected due to the slums created by the migrated people from various rural and urban areas. It is also observed that due to increase in population water supply and sewerage management is affecting. The overall effect on infrastructure is creating the health diseases which detailed in the paper using geographical information system in Indian city.Keywords: infrastructure, municipal wards, GIS, water supply, sewerage, medical facilities, water borne diseases
Procedia PDF Downloads 218