Search results for: cognitive models
3813 Civil-Military Relations in Turkey, Europe, and Middle East
Authors: Dorsa Bakhshandehgeyazdi
Abstract:
This article tries to comprehend the change of Turkish common military relations in an analogical viewpoint. The investigation is taking into account two criteria: institutional / legitimate systems and political oversight of the military's self-sufficiency. Examination of European furthermore, Middle Eastern common military relations models to the Turkish ideal model discloses grave contrasts in the middle of Turkish and Middle Eastern common military relations. The Turkish model in change for not less than 10 years is closer to the European show in both lawful and political perspectives. However, the article underscores that Turkish common military relations are still in change and despite the fact that the EU increase procedure has continuously democratized the legitimate arrangement of the nation, law based combining obliges further advances in the political area. A the result, stabilization in Turkey depends not just on withdrawing of the military from the political domain, additionally on the best possible civilization of the administration in hypothesis and practice.Keywords: Turkish common military, institutional, legitimate systems, political oversight, middle Eastern common military
Procedia PDF Downloads 4733812 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 2993811 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.Keywords: transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment
Procedia PDF Downloads 1713810 English Writing Anxiety in Debate Writing among Japanese Senior High School EFL Learners: Sources, Effects and Implication
Authors: Maria Lita Sudo
Abstract:
The debate is an effective tool in cultivating critical thinking skills in English classes. It involves writing evidence-based arguments about a resolution in a form of constructive speech and oral discussion using constructive speech, which will then be attacked and defended. In the process of writing, EFL learners may experience anxiety, an emotional problem that affects writing achievement and cognitive processing. Thus, this study explored the sources and effect of English writing anxiety in the context of debate writing with a view to providing EFL teachers pedagogical suggestions in alleviating English writing anxiety in debate writing. The participants of this study are 95 Japanese senior high school EFL learners and 3 Japanese senior high school English teachers. In selecting the participants, opportunity sampling was employed and consent from Japanese English teachers was sought. Data were collected thru (1) observation (2) open-ended questionnaire and (3) semi-structured interview. This study revealed that not all teachers of English in the context of this study recognize the existence of English writing anxiety among their students and that the very nature of the debate, in general, may also be a source of English writing anxiety in the context of debate writing. The interview revealed that English writing anxiety affects students’ ability to retrieve L2 vocabulary. Further, this study revealed different sources of writing anxiety in debate writing, which can be categorized into four main categories: (1) L2 linguistic ability-related factors (2) instructional –related factors, (3) interpersonal-related factors, and (4) debate- related factors. Based on the findings, recommendations for EFL teachers and EFL learners in managing writing anxiety in debate writing are provided.Keywords: debate, EFL learners, English writing anxiety, sources
Procedia PDF Downloads 1443809 Hominin Niche in the Times of Climate Change
Authors: Emilia Hunt, Sally C. Reynolds, Fiona Coward, Fabio Parracho Silva, Philip Hopley
Abstract:
Ecological niche modeling is widely used in conservation studies, but application to the extinct hominin species is a relatively new approach. Being able to understand what ecological niches were occupied by respective hominin species provides a new perspective into influences on evolutionary processes. Niche separation or overlap can tell us more about specific requirements of the species within the given timeframe. Many of the ancestral species lived through enormous climate changes: glacial and interglacial periods, changes in rainfall, leading to desertification or flooding of regions and displayed impressive levels of adaptation necessary for their survival. This paper reviews niche modeling methodologies and their application to hominin studies. Traditional conservation methods might not be directly applicable to extinct species and are not comparable to hominins. Hominin niche also includes aspects of technologies, use of fire and extended communication, which are not traditionally used in building conservation models. Future perspectives on how to improve niche modeling for extinct hominin species will be discussed.Keywords: hominin niche, climate change, evolution, adaptation, ecological niche modelling
Procedia PDF Downloads 1933808 Effectiveness of Acceptance and Commitment Therapy on Reducing Corona Disease Anxiety in the Staff Working in Shahid Beheshti Hospital of Shiraz
Authors: Gholam Reza Mirzaei
Abstract:
This research aimed to investigate the effectiveness of acceptance and commitment therapy (ACT) in reducing corona disease anxiety in the staff working at Shahid Beheshti Hospital of Shiraz. The current research was a quasi-experimental study having pre-test and post-test with two experimental and control groups. The statistical population of the research included all the staff of Shahid Beheshti Hospital of Shiraz in 2021. From among the statistical population, 30 participants (N =15 in the experimental group and N =15 in the control group) were selected by available sampling. The materials used in the study comprised the Cognitive Emotion Regulation Questionnaire (CERQ) and Corona Disease Anxiety Scale (CDAS). Following data collection, the participants’ scores were analyzed using SPSS 20 at both descriptive (mean and standard deviation) and inferential (analysis of covariance) levels. The results of the analysis of covariance (ANCOVA) showed that acceptance and commitment therapy (ACT) is effective in reducing Corona disease anxiety (mental and physical symptoms) in the staff working at Shahid Beheshti Hospital of Shiraz. The effectiveness of acceptance and commitment therapy (ACT) on reducing mental symptoms was 25.5% and on physical symptoms was 13.8%. The mean scores of the experimental group in the sub-scales of Corona disease anxiety (mental and physical symptoms) in the post-test were lower than the mean scores of the control group.Keywords: acceptance and commitment therapy, corona disease anxiety, hospital staff, Shiraz
Procedia PDF Downloads 493807 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs
Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour
Procedia PDF Downloads 1003806 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1823805 Shock Formation for Double Ramp Surface
Authors: Abdul Wajid Ali
Abstract:
Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications.Keywords: oblique shock formation, boundary layer interaction, schlieren images, double wedge surface
Procedia PDF Downloads 733804 Effectiveness of Enhancing Positive Emotion Program of Patients with Lung Cancer
Authors: Pei-Fan Mu
Abstract:
Background: Lung cancer is the most common cancer with the highest mortality rate. Patients with lung cancer under chemotherapy treatment experience life-threatening uncertainty. This study was based on the broaden-and-build theory using intentionality reflection of the body and internalization of positive prioritization strategies to enhance positive emotions of patients with lung cancer. Purpose: The purpose of this study was to use a quasi-experimental research design to examine the effectiveness of the enhancing positive emotion program. Method: Data were collected from a medical center in Taiwan. Fifty-four participants with lung cancer were recruited. Thirty participants were in the experiential group receiving the two weeks program. The content of the program includes awareness and understanding of the symptom experience, co-existing with illness and establishing self-identity, cognitive-emotion adjustment and establishing a new body schema, and symptom management to reach spiritual well-being. Twenty-four participants were in the control group receiving regular nursing care. Baseline, one month later and two months later, programmed measurements of symptoms of distress, positive emotion, and psychological well-being. Results: These two weeks of enhancing the positive emotion program resulted in a significantly improved positive emotion score for the experimental group compared to the control group. The findings of this study indicated that the positive emotion had significant differences between the two groups. There were no differences in symptom distress between the two groups. Discussion: The findings indicated that the enhancing positive emotion program could help patients enhance their life-threatening facing conditions.Keywords: positive emotion, lung cancer, experimental design, symptom distress
Procedia PDF Downloads 1033803 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine
Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori
Abstract:
Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.Keywords: LR115, radon concentration, rime series, underground goldmine
Procedia PDF Downloads 533802 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas
Authors: A. Odoom, A. Salama, H. Ibrahim
Abstract:
Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model
Procedia PDF Downloads 1453801 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 453800 Determinant Elements for Useful Life in Airports
Authors: Marcelo Müller Beuren, José Luis Duarte Ribeiro
Abstract:
Studies point that Brazilian large airports are not managing their assets efficiently. Therefore, organizations seek improvements to raise their asset’s productivity. Hence, identification of assets useful life in airports becomes an important subject, since its accuracy leads to better maintenance plans and technological substitution, contribution to airport services management. However, current useful life prediction models do not converge in terms of determinant elements used, as they are particular to the studied situation. For that reason, the main objective of this paper is to identify the determinant elements for a useful life of major assets in airports. With that purpose, a case study was held in the key airport of the south of Brazil trough historical data analysis and specialist interview. This paper concluded that most of the assets useful life are determined by technical elements, maintenance cost, and operational costs, while few presented influence of technological obsolescence. As a highlight, it was possible to identify the determinant elements to be considered by a model which objective is to identify the useful life of airport’s major assets.Keywords: airports, asset management, asset useful life
Procedia PDF Downloads 5263799 Probabilistic and Stochastic Analysis of a Retaining Wall for C-Φ Soil Backfill
Authors: André Luís Brasil Cavalcante, Juan Felix Rodriguez Rebolledo, Lucas Parreira de Faria Borges
Abstract:
A methodology for the probabilistic analysis of active earth pressure on retaining wall for c-Φ soil backfill is described in this paper. The Rosenblueth point estimate method is used to measure the failure probability of a gravity retaining wall. The basic principle of this methodology is to use two point estimates, i.e., the standard deviation and the mean value, to examine a variable in the safety analysis. The simplicity of this framework assures to its wide application. For the calculation is required 2ⁿ repetitions during the analysis, since the system is governed by n variables. In this study, a probabilistic model based on the Rosenblueth approach for the computation of the overturning probability of failure of a retaining wall is presented. The obtained results have shown the advantages of this kind of models in comparison with the deterministic solution. In a relatively easy way, the uncertainty on the wall and fill parameters are taken into account, and some practical results can be obtained for the retaining structure design.Keywords: retaining wall, active earth pressure, backfill, probabilistic analysis
Procedia PDF Downloads 4213798 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 443797 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’
Authors: Riin Seema
Abstract:
Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.Keywords: competency, counseling, self-efficacy, teacher students
Procedia PDF Downloads 1493796 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 3273795 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 4233794 Inferring Influenza Epidemics in the Presence of Stratified Immunity
Authors: Hsiang-Yu Yuan, Marc Baguelin, Kin O. Kwok, Nimalan Arinaminpathy, Edwin Leeuwen, Steven Riley
Abstract:
Traditional syndromic surveillance for influenza has substantial public health value in characterizing epidemics. Because the relationship between syndromic incidence and the true infection events can vary from one population to another and from one year to another, recent studies rely on combining serological test results with syndromic data from traditional surveillance into epidemic models to make inference on epidemiological processes of influenza. However, despite the widespread availability of serological data, epidemic models have thus far not explicitly represented antibody titre levels and their correspondence with immunity. Most studies use dichotomized data with a threshold (Typically, a titre of 1:40 was used) to define individuals as likely recently infected and likely immune and further estimate the cumulative incidence. Underestimation of Influenza attack rate could be resulted from the dichotomized data. In order to improve the use of serosurveillance data, here, a refinement of the concept of the stratified immunity within an epidemic model for influenza transmission was proposed, such that all individual antibody titre levels were enumerated explicitly and mapped onto a variable scale of susceptibility in different age groups. Haemagglutination inhibition titres from 523 individuals and 465 individuals during pre- and post-pandemic phase of the 2009 pandemic in Hong Kong were collected. The model was fitted to serological data in age-structured population using Bayesian framework and was able to reproduce key features of the epidemics. The effects of age-specific antibody boosting and protection were explored in greater detail. RB was defined to be the effective reproductive number in the presence of stratified immunity and its temporal dynamics was compared to the traditional epidemic model using use dichotomized seropositivity data. Deviance Information Criterion (DIC) was used to measure the fitness of the model to serological data with different mechanisms of the serological response. The results demonstrated that the differential antibody response with age was present (ΔDIC = -7.0). The age-specific mixing patterns with children specific transmissibility, rather than pre-existing immunity, was most likely to explain the high serological attack rates in children and low serological attack rates in elderly (ΔDIC = -38.5). Our results suggested that the disease dynamics and herd immunity of a population could be described more accurately for influenza when the distribution of immunity was explicitly represented, rather than relying only on the dichotomous states 'susceptible' and 'immune' defined by the threshold titre (1:40) (ΔDIC = -11.5). During the outbreak, RB declined slowly from 1.22[1.16-1.28] in the first four months after 1st May. RB dropped rapidly below to 1 during September and October, which was consistent to the observed epidemic peak time in the late September. One of the most important challenges for infectious disease control is to monitor disease transmissibility in real time with statistics such as the effective reproduction number. Once early estimates of antibody boosting and protection are obtained, disease dynamics can be reconstructed, which are valuable for infectious disease prevention and control.Keywords: effective reproductive number, epidemic model, influenza epidemic dynamics, stratified immunity
Procedia PDF Downloads 2633793 Influence of Rational Emotive Therapy on Substance Abuse Among Secondary School Students in Benue State
Authors: Justina I. Reamen
Abstract:
The study examined the influence of rational emotive therapy on the treatment of substance abuse among Senior Secondary School Students in Makurdi metropolis Benue State Nigeria. This research adopted youth self report scale which was distributed to 1,690 SSS Students drawn from Government day Secondary School Makurdi and Government Model College Makurdi. Afterwards, 200 who were identified to indulge in substance abuse were selected for the study, 100 each from the two schools. 100 were taken as the control group and 100 as the experimental group, (50 of each group from each school). The Rational Emotive Behavior Therapy (REBT) intervention program was presented to the experimental group for seven (7) weeks. The students were taught how to apply REBT’s cognitive, Emotive and Behavioral techniques on their problems. After which post test was conducted to find out the impact of REBT on the treatment of adolescent students with substance abuse problem. GLM repeated measures of ANOVA were used to analyze the data from the study. The study reveals that REBT has positive impact on the treatment of adolescent students that abuse substances in the study area. Between pretest to post-test scores, a significant difference was observed (F=26.939; P=000) in substance abuse where a decrease of 1.12 (pre-10.91, post-9.79) scores was noticed irrespective of the groups. However, when the decrease in substance abuse were analyzed group wise, (experimental control) again significant F value (F=38.782; P=000) was obtained. From the mean scores it is evident that experimental group decreased it means by 2.56 (Pre-10.04 - Post-8.83) scores compared to control group, which changed its scores by only 0.32 scores (pre 11.04 - Post 11.36). Recommendations were made based on the findings of the research.Keywords: abuse, influence, substance, therapy, treatment
Procedia PDF Downloads 2383792 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity
Authors: Eun Kyung Kim, Kyehan Rhee
Abstract:
Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity
Procedia PDF Downloads 2193791 Overview on Effectiveness of Learning Contract in Architecture Design Studios
Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta
Abstract:
The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.Keywords: contract (LC), architecture design studio, education, student-centered learning
Procedia PDF Downloads 4433790 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 903789 The Role of Blended Modality in Enhancing Active Learning Strategies in Higher Education: A Case Study of a Hybrid Course of Oral Production and Listening of French
Authors: Tharwat N. Hijjawi
Abstract:
Learning oral skills in an Arabic speaking environment is challenging. A blended course (material, activities, and individual/ group work tasks …) was implemented in a module of level B1 for undergraduate students of French as a foreign language in order to increase their opportunities to practice listening and speaking skills. This research investigates the influence of this modality on enhancing active learning and examines the effectiveness of provided strategies. Moreover, it aims at discovering how it allows teacher to flip the traditional classroom and create a learner-centered framework. Which approaches were integrated to motivate students and urge them to search, analyze, criticize, create and accomplish projects? What was the perception of students? This paper is based on the qualitative findings of a questionnaire and a focus group interview with learners. Despite the doubled time and effort both “teacher” and “student” needed, results revealed that the NTIC allowed a shift into a learning paradigm where learners were the “chiefs” of the process. Tasks and collaborative projects required higher intellectual capacities from them. Learners appreciated this experience and developed new life-long learning competencies at many levels: social, affective, ethical and cognitive. To conclude, they defined themselves as motivated young researchers, motivators and critical thinkers.Keywords: active learning, critical thinking, inverted classroom, learning paradigm, problem-based
Procedia PDF Downloads 2703788 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.Keywords: simulation model, misalignment, cogs missing, vibration analysis
Procedia PDF Downloads 2863787 The Moderating Effects of Attachment Style on the Relationship between the Psychological Symptoms and Well-Being of Mental Health Practitioners in Rehabilitation Centers: A Preliminary Study
Authors: Amaba, Marinela C., Espino, Gianne Ericka S. J. Valencia, Zeia Beatriz C.
Abstract:
This study aims to determine the moderating role of attachment style on the relationship between psychological symptoms and well-being of mental health practitioners in rehabilitation centers that are accredited of the Department of Health in Pampanga. Using the data gathered from 46 mental health practitioners, multiple regression models were conducted to test the main and moderating effects of attachment styles. The findings show that all three psychological symptoms namely depression, anxiety, and stress have main effects on their general well-being on a negative direction. However, attachment style did not moderate the relationship between the psychological symptoms and general well-being. On one hand, results about the relationship of psychological symptoms and well-being are consistent to previous findings of other studies while on the other hand, results in moderation were contradicting.Keywords: attachment style, psychological symptoms, well-being, mental health practitioners, rehabilitation centers
Procedia PDF Downloads 5543786 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels
Authors: Mahmoud M. Tash
Abstract:
The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.Keywords: hot forging, hot rolling, heat treatment, hardness (HV), impact toughness (J), microstructure, low alloy steels
Procedia PDF Downloads 5183785 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network
Authors: Ghobad Gorji, Hasan Golabi
Abstract:
The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK
Procedia PDF Downloads 793784 A Chinese Nested Named Entity Recognition Model Based on Lexical Features
Abstract:
In the field of named entity recognition, most of the research has been conducted around simple entities. However, for nested named entities, which still contain entities within entities, it has been difficult to identify them accurately due to their boundary ambiguity. In this paper, a hierarchical recognition model is constructed based on the grammatical structure and semantic features of Chinese text for boundary calculation based on lexical features. The analysis is carried out at different levels in terms of granularity, semantics, and lexicality, respectively, avoiding repetitive work to reduce computational effort and using the semantic features of words to calculate the boundaries of entities to improve the accuracy of the recognition work. The results of the experiments carried out on web-based microblogging data show that the model achieves an accuracy of 86.33% and an F1 value of 89.27% in recognizing nested named entities, making up for the shortcomings of some previous recognition models and improving the efficiency of recognition of nested named entities.Keywords: coarse-grained, nested named entity, Chinese natural language processing, word embedding, T-SNE dimensionality reduction algorithm
Procedia PDF Downloads 133