Search results for: surface potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17029

Search results for: surface potential

12379 Comprehensive Multi-Omics Study Highlights Osteopontin/SPP1 in Ovarian Aging Control

Authors: Chia-Jung Li, Li-Te Lin, Kuan-Hao Tsui

Abstract:

The study identifies SPP1 as a potential gene associated with ovarian aging, revealing a significant decline in its expression in aged ovaries. SPP1, also known as osteopontin (OPN), is a multifunctional glycoprotein involved with regulatory proteins and pro-inflammatory immune chemokines. However, its genetic links to ovarian aging have not been extensively explored. Spatial transcriptomic analyses were conducted on ovaries from young and aged female mice, along with a sample from a 73-year-old individual. Additionally, single-cell RNA sequencing analysis was performed to identify associations between SPP1 and key genes. The study focused on crucial genes, including ITGAV, ITGB1, CD44, MMP3, and FN1, with a particular emphasis on the correlation between SPP1 and ITGB1. The findings indicate a significant decline in SPP1 expression in aged ovaries, which was consistent in the 73-year-old sample. Single-cell RNA sequencing unveiled associations between SPP1 and key genes, emphasizing a strong co-expression correlation between SPP1 and ITGB1. While the study provides valuable insights, further research is necessary to understand the broader implications and potential applications of SPP1 in ovarian aging. Translating these findings to clinical settings requires careful consideration. The identification of SPP1 as a gene implicated in ovarian aging opens new avenues for advancing precision medicine and refining treatment strategies for conditions related to ovarian aging.

Keywords: SPP1, ovarian aging, spatial transcriptomic, single-cell RNA sequencing

Procedia PDF Downloads 47
12378 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India

Authors: Kalbende Krunal Ramesh

Abstract:

The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.

Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas

Procedia PDF Downloads 436
12377 Achieving Household Electricity Saving Potential Through Behavioral Change

Authors: Lusi Susanti, Prima Fithri

Abstract:

The rapid growth of Indonesia population is directly proportional to the energy needs of the country, but not all of Indonesian population can relish the electricity. Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. User behavior in utilizing electricity becomes significant. However repair solution will impact the user's habits sustainable energy issues. This study attempts to identify the user behavior and lifestyle that affect household electricity consumption and to evaluate the potential for energy saving. The behavior component is frequently underestimated or ignored in analyses of household electrical energy end use, partly because of its complexity. It is influenced by socio-demographic factors, culture, attitudes, aesthetic norms and comfort, as well as social and economic variables. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector.

Keywords: electricity, energy saving, household, behavior, policy

Procedia PDF Downloads 443
12376 Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock

Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin

Abstract:

Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.

Keywords: grafting technology, economic analysis, growth, yield of tomato, Solanum torvum

Procedia PDF Downloads 242
12375 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 60
12374 Analysis of Threats in Interoperability of Medical Devices

Authors: M. Sandhya, R. M. Madhumitha, Sharmila Sankar

Abstract:

Interoperable medical devices (IMDs) face threats due to the increased attack surface accessible by interoperability and the corresponding infrastructure. Initiating networking and coordination functionalities primarily modify medical systems' security properties. Understanding the threats is a vital first step in ultimately crafting security solutions for such systems. The key to this problem is coming up with some common types of threats or attacks with those of security and privacy, and providing this information as a roadmap. This paper analyses the security issues in interoperability of devices and presents the main types of threats that have to be considered to build a secured system.

Keywords: interoperability, threats, attacks, medical devices

Procedia PDF Downloads 335
12373 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 65
12372 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 349
12371 Tectonic Movements and Ecosystems

Authors: Arvind Kumar Trivedi

Abstract:

Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’.

Keywords: tectonic movements, ecosystems, plate tectonics, impact

Procedia PDF Downloads 55
12370 Urban Agriculture Potential and Challenges in Mid-Sized Cities: A Case Study of Neishabour, Iran

Authors: Mohammadreza Mojtahedi

Abstract:

Urban agriculture, in the face of burgeoning urban populations and unchecked urbanization, presents a promising avenue for sustainable economic, social, and environmental growth. This study, set against the backdrop of Neishabour, Iran, delves into the potential and challenges inherent in this domain. Utilizing a descriptive-analytical approach, field survey data were predominantly collated via questionnaires. The research rigor was upheld with the Delphi method affirming the validity and a Cronbach's alpha score exceeding 0.70, underscoring reliability. The study encompassed Neishabour's 2016 populace, pegged at 264,375, drawing a sample size of 384 via Cochran's formula. The findings spotlight Neishabour's pronounced agricultural prowess, as evidenced by a significance level under 0.05 and an average difference of 0.54. Engaging in urban agricultural ventures can notably elevate job quality, spur savings, bolster profitability, promote organic cultivation, and streamline production expenses. However, challenges, such as heightened land valuations for alternative uses, conflicting land engagements, security dilemmas, technical impediments, waning citizen interest, regulatory conundrums, and perceived upfront investment risks, were identified. A silver lining emerged with urban locales, especially streets and boulevards, securing average ratings of 3.90, marking them as prime contenders for urban agricultural endeavors.

Keywords: urban agriculture, sustainable development, mid-sized cities, neishabour.

Procedia PDF Downloads 66
12369 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 264
12368 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity

Authors: Manana Chumburidze, David Lekveishvili

Abstract:

We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.

Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution

Procedia PDF Downloads 509
12367 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.

Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian

Abstract:

The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.

Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation

Procedia PDF Downloads 504
12366 Restoration of Railway Turnout Frog with FCAW

Authors: D. Sergejevs, A. Tipainis, P. Gavrilovs

Abstract:

Railway turnout frogs restored with MMA often have such defects as infusions, pores, a.o., which under the influence of dynamic forces cause premature destruction of the restored surfaces. To prolong the operational time of turnout frog, i.e. operational time of the restored surface, turnout frog was restored using FCAW and afterwards matallographic examination was performed. Experimental study revealed that railway turnout frog restored with FCAW had better quality than elements restored with MMA, furthermore it provided considerable time economy.

Keywords: elements of railway turnout, FCAW, metallographic examination, quality of build-up welding

Procedia PDF Downloads 647
12365 Revealing the Potential of Geotourism and Geoheritage of Gedangsari Area, Yogyakarta

Authors: Cecilia Jatu, Adventino

Abstract:

Gedangsari is located in Gunungkidul, Yogyakarta Province, which has several criteria to be used as a new geosite object. The research area is located in the southern mountain zone of Java, composed of 5 rock formations with Oligocene up to Middle Miocene age. The purpose of this study is to reveal the potential of geotourism and the geoheritage to be proposed as a new geosite and to make a geosite map of Gedangsari. The research method used is descriptive data collection and which includes quantitative geological data collection, geotourism, and heritage sites, then supported by petrographic analysis, geological structure, geological mapping, and SWOT analysis. The geological data proved that Gedangsari consists of igneous rock (intrusion), pyroclastic rock, and sediment rock. This condition caused many varieties and particular geomorphological platform. Geotourism that include in Gedangsari are Luweng Sampang Canyon, Gedangsari Bouma Sequence, Watugajah Columnar Joint, Gedangsari Marine Fan Sediment, and Tegalrejo Waterfall. There is also Tegalrejo Village, which can be considered as geoheritage site because of its culture and batik traditional cloth. The results of the SWOT analysis, Gedangsari geosite must be developed and appropriately promoted in order to improve the existence. The development of geosite area will have a significant impact that improve the economic growth of the surrounding community and can be used by the government as base information for sustainable development. In addition, the making of an educational map about the geological conditions and geotourism location of the Gedangsari geosite can increase the people's knowledge about Gedangsari.

Keywords: Gedangsari, geoheritage, geotourism, geosite

Procedia PDF Downloads 125
12364 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 297
12363 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem

Abstract:

Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles

Procedia PDF Downloads 139
12362 Lactic Acid, Citric Acid, and Potassium Bitartrate Non-Hormonal Prescription Vaginal PH Modulator Gel for the Prevention of Pregnancy

Authors: Shanna Su, Kathleen Vincent

Abstract:

Introduction: A non-hormonal prescription vaginal pH modulator (VPM) gel (Phexxi®), with active ingredients lactic acid, citric acid, and potassium bitartrate, has recently been approved for the prevention of pregnancy in the United States. The objective of this review is to compile the evidence available from published preclinical and clinical trials to support its use. Areas covered: PubMed was searched for published literature on VPM gel. Two Phase III trials were found on the clinicaltrials.gov database. The results demonstrated that VPM gel is safe, with minimal side effects, and effective (cumulative 6-7 cycle pregnancy rate of 4.1-13.65%, (Pearl Index 27.5) as a contraceptive. Microbicidal effects suggest the potential for the prevention of sexually transmitted infections (STIs); currently, a Phase III clinical trial is being conducted to evaluate the prevention of chlamydia and gonorrhea. Expert opinion: Non-hormonal reversible contraceptive options have been limited to the highly effective copper-releasing intrauterine device that requires insertion by a trained clinician and less effective coitally-associated barrier and spermicide options which are typically available over-the-counter. Spermicides, which improve the efficacy of barrier devices, may increase the risk of Human Immunodeficiency Virus (HIV)/STIs. VPM gel provides a new safe, effective non-hormonal contraceptive option with the potential for prevention of STIs.

Keywords: citric acid, lactic acid, non-hormonal contraception, potassium bitartrate, topical vaginal contraceptive, vaginal pH modulator gel

Procedia PDF Downloads 104
12361 Studies of Lactose Utilization in Microalgal Isolate for Further Use in Dairy By-Product Bioconversion

Authors: Sergejs Kolesovs, Armands Vigants

Abstract:

The use of dairy industry by-products and wastewater as a cheap substrate for microalgal growth is gaining recognition. However, the mechanisms of lactose utilization remain understudied, limiting the potential of successful microalgal biomass production using various dairy by-products, such as whey and permeate. The necessity for microalgae to produce a specific enzyme, β-galactosidase, requires the selection of suitable strains. This study focuses on a freshwater microalgal isolate's ability to grow on a semi-synthetic medium supplemented with lactose. After 10 days of agitated cultivation, an axenic microalgal isolate achieved significantly higher biomass production under mixotrophic growth conditions (0.86 ± 0.07 g/L, dry weight) than heterotrophic growth (0.46 ± 0.04 g/L). Moreover, mixotrophic cultivation had significantly higher biomass production compared to photoautotrophic growth (0.67 ± 0.05 g/L). The activity of β-galactosidase was detected in both supernatant and microalgal biomass under mixotrophic and heterotrophic growth conditions, showing the potential of extracellular and intracellular mechanisms of enzyme production. However, the main limiting factor in this study was the increase of pH values during the cultivation, significantly reducing the activity of the β-galactosidase enzyme after 3rd day of cultivation. It highlights the need for stricter control of growth parameters to ensure the enzyme's activity. Further research will assess the isolate's suitability for dairy by-product bioconversion and biomass composition.

Keywords: microalgae, lactose, whey, permeate, beta-galactosidase, mixotrophy, heterotrophy

Procedia PDF Downloads 72
12360 Optimization of Lercanidipine Nanocrystals Using Design of Experiments Approach

Authors: Dolly Gadhiya, Jayvadan Patel, Mihir Raval

Abstract:

Lercanidipine hydrochloride is a calcium channel blockers used for treating angina pectoris and hypertension. Lercanidipine is a BCS Class II drug having poor aqueous solubility. Absolute bioavailability of Lercanidipine is very low and the main reason ascribed for this is poor aqueous solubility of the drug. Design and formulatation of nanocrystals by media milling method was main focus of this study. In this present study preliminary optimization was carried out with one factor at a time (OFAT) approach. For this different parameters like size of milling beads, amount of zirconium beads, types of stabilizer, concentrations of stabilizer, concentrations of drug, stirring speeds and milling time were optimized on the basis of particle size, polydispersity index and zeta potential. From the OFAT model different levels for above parameters selected for Plackett - Burman Design (PBD). Plackett-Burman design having 13 runs involving 6 independent variables was carried out at higher and lower level. Based on statistical analysis of PBD it was found that concentration of stabilizer, concentration of drug and stirring speed have significant impact on particle size, PDI, zeta potential value and saturation solubility. These experimental designs for preparation of nanocrystals were applied successfully which shows increase in aqueous solubility and dissolution rate of Lercanidipine hydrochloride.

Keywords: Lercanidipine hydrochloride, nanocrystals, OFAT, Plackett Burman

Procedia PDF Downloads 209
12359 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: heteropoly acid, graphene oxide, MOF, tetracycline

Procedia PDF Downloads 138
12358 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 148
12357 On Regional Climate Singularity: On Example of the Territory of Georgia

Authors: T. Davitashvili

Abstract:

In this paper, some results of numerical simulation of the air flow dynamics in the troposphere over the Caucasus Mountains taking place in conditions of nonstationarity of large-scale undisturbed background flow are presented. Main features of the atmospheric currents changeability while air masses are transferred from the Black Sea to the land’s surface had been investigated. In addition, the effects of thermal and advective-dynamic factors of atmosphere on the changes of the West Georgian climate have been studied. It was shown that non-proportional warming of the Black Sea and Colkhi lowland provokes the intensive strengthening of circulation and effect of climate cooling in the western Georgia.

Keywords: regional climate, numerical simulation, local circulation, orographic effect

Procedia PDF Downloads 485
12356 X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors

Authors: Marie Kudrnová, Jana Rejková

Abstract:

The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers.

Keywords: XPS, MSR, nickel alloy, metal oxides

Procedia PDF Downloads 85
12355 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions

Authors: Feran Asur

Abstract:

In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.

Keywords: residential landscape, planting, urban space, visual improvement

Procedia PDF Downloads 143
12354 Aspects of the Promotional Language of Tourism in Social Media. A Case Study of Romanian Accommodation Industry

Authors: Sanda-Maria Ardeleanu, Ana Crăciunescu

Abstract:

This paper is sustained by our previous research on discursive strategies, whichdemonstrated that tourismhas developed and employed apromotional languageper se. We have studied this concept within the framework of audio-visual advertising by analyzing its discursive structures at the level of three main strategies (textual, visual, and both textual and visual) and confirmed the applicability of the promotional language per se within the field. Tourism, at large, represents a largely potential interdisplinary field, which allowed us to use qualitative methods of research such as Discourse Analysis (DA). Due to further research which showed that in the third phase of qualitative research methodologies, scholars in tourism recognized semiotics and DA as potential paths to follow, but which were insufficiently explored at the time, we soon realized that the natural next step to take is to bring together common qualitative methodologies for both fields, such as the method of observation, the triangulation, Discourse Analysis, etc. Therefore and in the light of fast transformations of the medium that intermediates the message, in this paper, we are going to focus on the manifestations of the promotional language in social media texts, which advertise for the urban industry of accommodation in Romania. We shall constitute a corpus of study as the basis for our research methodology and, through the empirical method of observation and DA, we propose to recognize or discover new patterns developed at textual (mainly) and visual level or the mix of the two, known as strategies of the promotional language of tourism.

Keywords: discourse analysis, promotional language of tourism, social media, urban accommodation industry, tourism

Procedia PDF Downloads 171
12353 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 104
12352 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression

Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac

Abstract:

The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.

Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi

Procedia PDF Downloads 205
12351 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application

Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela

Abstract:

Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.

Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application

Procedia PDF Downloads 126
12350 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 96