Search results for: renewable energy conversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9339

Search results for: renewable energy conversion

4689 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 387
4688 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 158
4687 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
4686 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 317
4685 Optical and Luminescence Studies on Dy³+ Singly Doped and Dy³+/Ce³+ Co-doped Alumina Borosilicate Glasses for Photonics Device Application

Authors: M. Monisha, Sudha D. Kamath

Abstract:

We investigate the optical and photoluminescence properties from Dy³+ singly doped and Dy³+ co-doped with Ce³+alumino borosilicate glasses prepared using high temperature melt-quenching technique. The glass composition formula is 25SiO₂-(40-x-y)B2O₃-10Al₂O₃-15NaF-10ZnO-xDy₂O₃ yCe₂O₃ where, x = 0.5 mol% and y = 0, 0.1, and 0.5 mol%. The XRD study reveals the amorphous nature of both singly doped and co-doped glasses. Absorption study on Dy3+ singly doped glass shows nearly twelve absorption peaks arising from the ground level of Dy³+ ions (⁶H₁₅/₂) to various upper levels, and for Dy³+/Ce³+ co-doped glasses, few of the transitions in the visible region are suppressed. The absorption band edge is shifted towards the higher wavelength region on increasing Ce3+concentration. The decrease in indirect energy bandgap and increase in Urbach energy of the prepared glasses is observed due to codoping with Ce3+ ions. The photoluminescence studies on singly doped glass under 350 nm excitation showed three peaks at the blue (482 nm), yellow (575 nm), and red (663 nm) region. For codoped glasses, the emission peak at 403 nm is raised due to the 4d to 5f transition of Ce3+ ions. Lifetime values (ms) of co-doped glass is found to be higher than singly doped glass. Under 350 nm excitation, CIE coordinates of the co-doped glasses moved towards the bright white light region. The correlated color temperature (CCT) values were obtained in the range 4500 – 4700 K. Thus, the prepared glasses can be used for photonics device applications.

Keywords: absorption spectra, borosilicate glasses, Ce³+, Dy³+, photoluminescence

Procedia PDF Downloads 150
4684 Feasibility of Chicken Feather Waste as a Renewable Resource for Textile Dyeing Processes

Authors: Belayihun Missaw

Abstract:

Cotton cationization is an emerging area that solves the environmental problems associated with the reactive dyeing of cotton. In this study, keratin hydrolysate cationizing agent from chicken feather was extracted and optimized to eliminate the usage of salt during dyeing. Cationization of cotton using the extracted keratin hydrolysate and dyeing of the cationized cotton without salt was made. The effect of extraction parametric conditions like concentration of caustic soda, temperature and time were studied on the yield of protein from chicken feather and colour strength (K/S) values, and these process conditions were optimized. The optimum extraction conditions were. 25g/l caustic soda, at 500C temperature and 105 minutes with average yield = 91.2% and 4.32 colour strength value. The effect of salt addition, pH and concentration of cationizing agent on yield colour strength was also studied and optimized. It was observed that slightly acidic condition with 4% (% owf) concentration of cationizing agent gives a better dyeability as compared to normal cotton reactive dyeing. The physical properties of cationized-dyed fabric were assessed, and the result reveals that the cationization has a similar effect as normal dyeing of cotton. The cationization of cotton with keratin extract was found to be successful and economically viable.

Keywords: cotton materials, cationization, reactive dye, keratin hydrolysate

Procedia PDF Downloads 63
4683 Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals.

Keywords: Bacillus safensis LCX, high valued chemicals, lignocellulosic enzymes, solid state fermentation

Procedia PDF Downloads 295
4682 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 143
4681 Environmental Cost and Benefits Analysis of Different Electricity Option: A Case Study of Kuwait

Authors: Mohammad Abotalib, Hamid Alhamadi

Abstract:

In Kuwait, electricity is generated from two primary sources that are heavy fuel combustion and natural gas combustion. As Kuwait relies mainly on petroleum-based products for electricity generation, identifying and understanding the environmental trade-off of such operations should be carefully investigated. The life cycle assessment (LCA) tool is applied to identify the potential environmental impact of electricity generation under three scenarios by considering the material flow in various stages involved, such as raw-material extraction, transportation, operations, and waste disposal. The three scenarios investigated represent current and futuristic electricity grid mixes. The analysis targets six environmental impact categories: (1) global warming potential (GWP), (2) acidification potential (AP), (3) water depletion (WD), (4) acidification potential (AP), (4) eutrophication potential (EP), (5) human health particulate matter (HHPM), and (6) smog air (SA) per one kWh of electricity generated. Results indicate that one kWh of electricity generated would have a GWP (881-1030) g CO₂-eq, mainly from the fuel combustion process, water depletion (0.07-0.1) m³ of water, about 68% from cooling processes, AP (15.3-17.9) g SO₂-eq, EP (0.12-0.14) g N eq., HHPA (1.13- 1.33)g PM₂.₅ eq., and SA (64.8-75.8) g O₃ eq. The variation in results depend on the scenario investigated. It can be observed from the analysis that introducing solar photovoltaic and wind to the electricity grid mix improves the performance of scenarios 2 and 3 where 15% of the electricity comes from renewables correspond to a further decrease in LCA results.

Keywords: energy, functional uni, global warming potential, life cycle assessment, energy, functional unit

Procedia PDF Downloads 135
4680 Real-World Vehicle to Grid: Case Study on School Buses in New England

Authors: Aaron Huber, Manoj Karwa

Abstract:

Floods, heat waves, drought, wildfires, tornadoes and other environmental disasters are a snapshot of looming national problems that can create increasing demands on the national grid. With nearly 500,000 school buses on the road and the environmental protection agency (EPA) providing nearly $1B for electric school buses, there is a solution for this national issue. Bidirectional batteries in electric school buses enable a future proof solution to sustain the power grid during adverse environmental conditions and other periods of high demand. School buses have larger batteries than standard electric vehicles. When they are not transporting students, these buses can spend peak solar hours parked and plugged into bi-directional direct current fast chargers (DCFC). A partnership with Highland Electric, Proterra and Rhombus enabled over 7 MWh of energy servicing Massachusetts and Vermont grids. The buses were part of a vehicle to grid (V2G) program with National Grid and Green Mountain Power that can charge an average American home for one month with a single bus. V2G infrastructure enables school systems to future proof their charging strategies, strengthen their local grids and can create additional revenue streams with their EV fleets. A bidirectional ecosystem with Highland, Proterra and Rhombus can enable grid resiliency or the ability to withstand power outages caused by excessive demands, natural disasters or rogue nation's attacks with no loss of service. A fleet of school buses is a standalone resilient asset that can be accessed across a city to keep its citizens safe without having any toxic fumes. Nearly 95% of all school buses across USA are powered by diesel internal combustion engines. Diesel exhaust has been classified as a human carcinogen, and it can lead to and exacerbate respiratory conditions. Bidirectional school buses and chargers enable energy justice by providing backup power in case of emergencies or high demand for marginalized communities and aim to make energy more accessible, affordable, clean, and democratically managed.

Keywords: V2G, vehicle to grid, electric buses, eBuses, DC fast chargers, DCFC

Procedia PDF Downloads 77
4679 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 206
4678 Surgical Outcomes of Lung Cancer Surgery in Tasmania

Authors: Ayeshmanthe Rathnayake, Ashutosh Hardikar

Abstract:

Introduction: Lung cancer is the most common cause of cancer death in Australia, with more than 13000 cases per year. Until now, there has been a major deficiency of national comprehensive thoracic surgery data. The thoracic workload for surgeons as well as caseload per unit, is highly variable, with some centres performing less than 15 cases per annum, thus raising concerns about optimal care at low-volume sites. This is an attempt to review the outcomes of lung cancer surgery in Tasmania. Method: The objective of this study is to determine the surgical outcomes of lung cancer surgery at Royal Hobart Hospital (RHH) with the primary outcome of surgical mortality. Four hundred fifty-one cases were analysed retrospectively from 2010 to May 2022. Results: A total of 451 patients underwent thoracic surgery with a primary diagnosis of lung cancer. The primary outcome of 30-day mortality was <0.5%. The mean age was 65.3 years, with male predominance and a 4.2% prevalence of Indigenous Australians. The mean LOS was 7.5 days. The surgical approach was either VATS (50.3%) or Thoracotomy (49.7%), with a trend towards the former in recent years with an increase in the proportion of VATS from 18.2% to 51% (p<0.05) in complex resections since 2019. A corresponding reduction in conversion rate to open was observed (18% vs. 5.5%), and there were no deaths within this subgroup. Lung resections were divided into lobectomy (55.4%), wedge resection (36.8%), segmentectomy (2.9%) and pneumonectomy (4.9%). The RHH demonstrates good surgical outcomes for lung cancer and provides a sustainable service for Tasmania. Conclusion: This retrospective study reports the surgical outcomes of lung cancer surgery at the Royal Hobart Hospital, thereby providing insight into the surgical management of lung cancer in the state thus far. The state has been slow to catch up on the minimally invasive program, but the overall results have been comparable to most peers.

Keywords: lung cancer, thoracic surgery, lung resection, surgical outcomes

Procedia PDF Downloads 97
4677 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System

Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra

Abstract:

Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.

Keywords: energy dissipation, friction-pendulum system, nonlinear analysis, steel structure

Procedia PDF Downloads 202
4676 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study

Authors: Mohamed. A. Saad

Abstract:

The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.

Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement

Procedia PDF Downloads 253
4675 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis

Authors: Mangaka C. Matoetoe, Fredrick O. Okumu

Abstract:

Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.

Keywords: kinetics, morphology, nanoparticles, platinum, silver

Procedia PDF Downloads 401
4674 Growth Performance and Blood Characteristics of Broilers Chicken Fed on Diet Containing Brewer Spent Grain at Finisher Phase

Authors: O. A. Anjola, M. A. Adejobi, L. A Tijani

Abstract:

This study was conducted to investigate the effects of brewer spent grain (BSG) on growth performance and serum biochemistry characteristics of blood of broilers chickens. Three hundred and fifteen (4 weeks old) Oba – Marshall Broilers were used for the experiment. Five experimental diets were formulated with diet 1 (T1) containing 100% soya bean meal as the control, Diet 2, 3, 4 and 5 had BSG as replacement for soya bean meal at 0%, 36%, 57%, 76% and 100% respectively. The birds were allocated into each dietary group in a completely randomized design with 63 chicks in 3 replicates of 21 chicks each. The birds were offered these diets ad libitum from four weeks old to nine weeks old (35 days). Feed intake, body weight, weight gain, and feed conversion ratio (FCR) were assessed. Blood samples were also collected to examine the effect of BSG waste on hematology and serum biochemistry of broilers. Result indicated that BSG did not significantly (P>0.05) affect feed intake and weight gain. However, FCR and final weight of finishing broilers differs significantly (P<0.05) among treatments. The blood hematology and serum biochemistry indices did not follow a particular trend. Cholesterol concentration reduced with increasing level of BSG in the diet. Hb, RBC, WBC, neutrophils, lymphocytes, heterophiles and MCHC were significant (P<0.05) while MHC and MVC were not significantly (P>0.05) affected by BSG in diets. serum total protein, albumin, and cholesterol concentration also showed significance (P<0.05) difference. Thus, BSG can replace soya bean meal up to 14% in the broiler finisher diet without deleterious effect on the growth, hematology and the serum biochemistry of broiler chicken.

Keywords: broilers, growth performance, haematology, serum biochemistry

Procedia PDF Downloads 349
4673 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 103
4672 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 93
4671 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 47
4670 Application of 3-6 Years Old Children Basketball Appropriate Forms of Teaching Auxiliary Equipment in Early Childhood Basketball Game

Authors: Hai Zeng, Anqing Liu, Shuguang Dan, Ying Zhang, Yan Li, Zihang Zeng

Abstract:

Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.

Keywords: appropriate forms of children basketball, auxiliary equipment, appli, MINI basketball, 3-6 years old children, teaching

Procedia PDF Downloads 386
4669 High Purity Germanium Detector Characterization by Means of Monte Carlo Simulation through Application of Geant4 Toolkit

Authors: Milos Travar, Jovana Nikolov, Andrej Vranicar, Natasa Todorovic

Abstract:

Over the years, High Purity Germanium (HPGe) detectors proved to be an excellent practical tool and, as such, have established their today's wide use in low background γ-spectrometry. One of the advantages of gamma-ray spectrometry is its easy sample preparation as chemical processing and separation of the studied subject are not required. Thus, with a single measurement, one can simultaneously perform both qualitative and quantitative analysis. One of the most prominent features of HPGe detectors, besides their excellent efficiency, is their superior resolution. This feature virtually allows a researcher to perform a thorough analysis by discriminating photons of similar energies in the studied spectra where otherwise they would superimpose within a single-energy peak and, as such, could potentially scathe analysis and produce wrongly assessed results. Naturally, this feature is of great importance when the identification of radionuclides, as well as their activity concentrations, is being practiced where high precision comes as a necessity. In measurements of this nature, in order to be able to reproduce good and trustworthy results, one has to have initially performed an adequate full-energy peak (FEP) efficiency calibration of the used equipment. However, experimental determination of the response, i.e., efficiency curves for a given detector-sample configuration and its geometry, is not always easy and requires a certain set of reference calibration sources in order to account for and cover broader energy ranges of interest. With the goal of overcoming these difficulties, a lot of researches turned towards the application of different software toolkits that implement the Monte Carlo method (e.g., MCNP, FLUKA, PENELOPE, Geant4, etc.), as it has proven time and time again to be a very powerful tool. In the process of creating a reliable model, one has to have well-established and described specifications of the detector. Unfortunately, the documentation that manufacturers provide alongside the equipment is rarely sufficient enough for this purpose. Furthermore, certain parameters tend to evolve and change over time, especially with older equipment. Deterioration of these parameters consequently decreases the active volume of the crystal and can thus affect the efficiencies by a large margin if they are not properly taken into account. In this study, the optimisation method of two HPGe detectors through the implementation of the Geant4 toolkit developed by CERN is described, with the goal of further improving simulation accuracy in calculations of FEP efficiencies by investigating the influence of certain detector variables (e.g., crystal-to-window distance, dead layer thicknesses, inner crystal’s void dimensions, etc.). Detectors on which the optimisation procedures were carried out were a standard traditional co-axial extended range detector (XtRa HPGe, CANBERRA) and a broad energy range planar detector (BEGe, CANBERRA). Optimised models were verified through comparison with experimentally obtained data from measurements of a set of point-like radioactive sources. Acquired results of both detectors displayed good agreement with experimental data that falls under an average statistical uncertainty of ∼ 4.6% for XtRa and ∼ 1.8% for BEGe detector within the energy range of 59.4−1836.1 [keV] and 59.4−1212.9 [keV], respectively.

Keywords: HPGe detector, γ spectrometry, efficiency, Geant4 simulation, Monte Carlo method

Procedia PDF Downloads 120
4668 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass

Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym

Abstract:

Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.

Keywords: contact angle, plasma, superhydrophobic, surface free energy

Procedia PDF Downloads 481
4667 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts

Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh

Abstract:

In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.

Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain

Procedia PDF Downloads 173
4666 Effect of Nanoscale Bismuth Oxide on Radiation Shielding and Interaction Characteristics of Polyvinyl Alcohol-Based Polymer for Medical Apron Design

Authors: E. O. Echeweozo

Abstract:

This study evaluated radiation shielding and interaction characteristics of polyvinyl alcohol (PVA) polymer separately doped with 10% and 20% nanoscale Bi₂O₃, respectively, for medical apron design and shielding special electronic installations. Prepared samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The EDS results showed that Carbon (C), Oxygen (O), and bismuth (Bi) elements were the predominant elements present in the prepared samples. The SEM result displaced surface irregularities due to a special bonding matrix between PVA and Bi₂O₃. Mass attenuation coefficient (MAC), effective atomic number (Zeff), Half value layer (HVL), Mean free path (MFP), Fast neutron removal cross-section (R), Total Mass Stopping Power (TSP), and photon Range (R) of the prepared polymer composites (PV-1Bi and PV-2Bi) were evaluated with XCOM and PHITS computer programs. Results showed that the MAC of the prepared polymer samples was significantly higher than some recently developed composites at 0.662MeV and 1.25MeV gamma energy. Therefore, polyvinyl alcohol (PVA) polymer doped with Bi₂O₃ should be deployed in medical apron design and shielding special electronic installations where flexibility and high adhesion ability are crucial.

Keywords: polyvinyl alcohol (PVA);, polymer composite, gamma-rays, charged particles

Procedia PDF Downloads 20
4665 Synthesis and Characterization of Chitosan Schiff Base Supported Pd(II) Catalyst and Its Application in Suzuki Coupling Reactions

Authors: Talat Baran

Abstract:

Palladium-catalyzed Suzuki coupling reactions are powerful ways for synthesis of biaryls compounds and so far different palladium sources as have been used in catalyst systems. However, the high cost of the ligands using as support materials for palladium ion and so researchers have explored alternative low-cost support materials such as silica, cellule and zeolite. A natural polymer chitosan is suitable for support material because of it unique properties such as eco-friendly, renewable, abundant, low cost, biodegradable and it has free reactive -NH2 and –OH groups. Especially, pendant amino groups of chitosan can easily react with carbonyl groups of aldehyde or ketone by Schiff base formation and thus palladium ions can coordinate with imine groups of Schiff base. This purpose, in this study, firstly a new chitosan Schiff base supported palladium (II) catalyst was synthesized and its chemical structure was characterized with FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES and magnetic moment techniques. Then catalytic performance of the catalyst was investigated in Suzuki cross coupling reactions under simple and fast microwave heating methods. Also, recycle activity of palladium catalyst was tested under optimum condition and the catalyst showed long life time. At the end of catalytic performance tests of chitosan supported palladium (II) catalysts indicated high turnover numbers, turnover frequency and selectivity with very small loading catalyst

Keywords: catalyst, chitosan, Schiff base, Suzuki coupling

Procedia PDF Downloads 325
4664 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 153
4663 Assessment of Adsorption Properties of Neem Leaves Wastes for the Removal of Congo Red and Methyl Orange

Authors: Muhammad B. Ibrahim, Muhammad S. Sulaiman, Sadiq Sani

Abstract:

Neem leaves were studied as plant wastes derived adsorbents for detoxification of Congo Red (CR) and Methyl Orange (MO) from aqueous solutions using batch adsorption technique. The objectives involved determining the effects of the basic adsorption parameters are namely, agitation time, adsorbent dosage, adsorbents particle size, adsorbate loading concentrations and initial pH, on the adsorption process as well as characterizing the adsorbents by determining their physicochemical properties, functional groups responsible for the adsorption process using Fourier Transform Infrared (FTIR) spectroscopy and surface morphology using scanning electron microscopy (SEM) coupled with energy dispersion X – ray spectroscopy (EDS). The adsorption behaviours of the materials were tested against Langmuir, Freundlich, etc. isotherm models. Percent adsorption increased with increase in agitation time (5 – 240 minutes), adsorbent dosage (100-500mg), initial concentration (100-300mg/L), and with decrease in particle size (≥75μm to ≤300μm) of the adsorbents. Both processes are dye pH-dependent, increasing or decreasing percent adsorption in acidic (2-6) or alkaline (8-12) range over the studied pH (2-12) range. From the experimental data the Langmuir’s separation factor (RL) suggests unfavourable adsorption for all processes, Freundlich constant (nF) indicates unfavourable process for CR and MO adsorption; while the mean free energy of adsorption

Keywords: adsorption, congo red, methyl orange, neem leave

Procedia PDF Downloads 365
4662 Significance of High Specific Speed in Circulating Water Pump, Which Can Cause Cavitation, Noise and Vibration

Authors: Chandra Gupt Porwal

Abstract:

Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge re-circulation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal re-circulation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. The author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios > 1.5, for future projects and Nss be limited to 8500 -9000 for cavitation free operation.

Keywords: best efficiency point (BEP), net positive suction head NPSHA, NPSHR, specific speed NS, suction specific speed NSS

Procedia PDF Downloads 254
4661 Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis

Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan

Abstract:

A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.

Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production

Procedia PDF Downloads 31
4660 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 20