Search results for: plant density
2161 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines
Authors: H. Al-Jabli
Abstract:
Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.Keywords: high saline brine, freeze-melting process, ice crystallization, brine disposal process
Procedia PDF Downloads 2692160 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 1552159 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia
Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie
Abstract:
The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line
Procedia PDF Downloads 3902158 Control System Design for a Simulated Microbial Electrolysis Cell
Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen
Abstract:
Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller
Procedia PDF Downloads 2472157 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique
Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra
Abstract:
Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying
Procedia PDF Downloads 2442156 GC and GCxGC-MS Composition of Volatile Compounds from Cuminum cyminum and Carum carvi by Using Techniques Assisted by Microwaves
Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe
Abstract:
The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.Keywords: microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS
Procedia PDF Downloads 2582155 Evaluation of Hancornia speciosa Gomes Lyophilization at Different Stages of Maturation
Authors: D. C. Soares, J. T. S. Santos, D. G. Costa, A. K. S. Abud, T. P. Nunes, A. V. D. Figueiredo, A. M. de Oliveira Junior
Abstract:
Mangabeira (Hancornia speciosa Gomes), a native plant in Brazil, is found growing spontaneously in various regions of the country. The high perishability of tropical fruits such as mangaba, causes it to be necessary to use technologies that promote conservation, aiming to increase the shelf life of this fruit and add value. The objective of this study was to compare the mangabas lyophilisation curves behaviours with different sizes and maturation stages. The fruits were freeze-dried for a period of approximately 45 hours at lyophilizer Liotop brand, model L -108. It has been considered large the fruits between 38 and 58 mm diameter and small, between 23 and 28 mm diameter and the two states of maturation, intermediate and mature. Large size mangabas drying curves in both states of maturation were linear behaviour at all process, while the kinetic drying curves related to small fruits, independent of maturation state, had a typical behaviour of drying, with all the well-defined steps. With these results it was noted that the time of lyophilisation was suitable for small mangabas, a fact that did not happen with the larger one. This may indicate that the large mangabas require a longer time to freeze until reaches the equilibrium level, as it happens with the small fruits, going to have constant moisture at the end of the process. For both types of fruit were analysed water activity, acidity, protein, lipid, and vitamin C before and after the process.Keywords: freeze dryer, mangaba, conservation, chemical characteristics
Procedia PDF Downloads 3002154 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas
Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia
Abstract:
Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids
Procedia PDF Downloads 2562153 Behavior of Laterally Loaded Multi-Helix Helical Piles Under Vertical Loading in Cohesive and Cohesionless Soils
Authors: Mona Fawzy Aldaghma
Abstract:
Helical piles are gaining popularity as a viable deep foundation alternative due to their quick installation and multipurpose use in compression and tension. These piles are commonly used as foundations for constructions such as solar panels, wind turbines and offshore platforms. These structures typically transfer various combinations of loads to their helical-pile foundations, including axial and lateral loads. Further research is needed to determine the effects of loading patterns that may act on helical piles as compounds of axial compression and lateral stresses. Multi helical piles are used to increase the efficiency of these piles. In this study, it investigate the behavior of laterally loaded helical piles with multiple helices when subjected to vertical loading conditions in both cohesive and cohesionless soils. Two models of intermediate shaft rigidity are studied with either two or three helices. Additionally, the vertical loading conditions were altered between successive and simultaneous loading. The cohesionless soil is sand with medium density and the cohesive soil is clay with medium cohesion. The study will carried out with numerical analysis using PLAXIS 3D and will be verified by an experimental tests. The numerical simulations reveal that helical piles exhibit different behavior in cohesive soil compared to cohesionless soil.Keywords: helical piles, multi-helix, numerical modeling, PLAXIS 3D, cohesive soil, cohesionless soil, experimental
Procedia PDF Downloads 362152 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies
Authors: Sam Bahreini, Payam Hayati
Abstract:
Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)
Procedia PDF Downloads 1692151 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.Keywords: agro-industrial waste, biomass, briquettes, combustion
Procedia PDF Downloads 2062150 Effect of Different Processing Methods on the Quality Attributes of Pigeon Pea Used in Bread Production
Authors: B. F. Olanipekun, O. J. Oyelade, C. O. Osemobor
Abstract:
Pigeon pea is a very good source of protein and micronutrient, but it is being underutilized in Nigeria because of several constraints. This research considered the effect of different processing methods on the quality attributes of pigeon pea used in bread production towards enhancing its utility. Pigeon pea was obtained at a local market and processed into the flour using three processing methods: soaking, sprouting and roasting and were used to bake bread in different proportions. Chemical composition and sensory attributes of the breads were thereafter determined. The highest values of protein and ash contents were obtained from 20 % substitution of sprouted pigeon pea in wheat flour and may be attributable to complex biochemical changes occurring during hydration, to invariably lead to protein constituent being broken down. Hydrolytic activities of the enzymes from the sprouted sample resulted in improvement in the constituent of total protein probably due to reduction in the carbohydrate content. Sensory qualities analyses showed that bread produced with soaked and roasted pigeon pea flours at 5 and 10% inclusion, respectively were mostly accepted than other blends, and products with sprouted pigeon pea flour were least accepted. The findings of this research suggest that supplementing wheat flour with sprouted pigeon peas have more nutritional potentials. However, with sensory analysis indices, the soaked and roasted pigeon peas up to 10% are majorly accepted, and also can improve the nutritional status. Overall, this will be very beneficial to population dependent on plant protein in order to combat malnutrition problems.Keywords: pigeon pea, processing, protein, malnutrition
Procedia PDF Downloads 2502149 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory
Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör
Abstract:
This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor
Procedia PDF Downloads 2962148 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering
Authors: Amin Jabbari
Abstract:
The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.Keywords: AM, 3D printed implants, bioceramic, tissue engineering
Procedia PDF Downloads 662147 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time
Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn
Abstract:
The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical
Procedia PDF Downloads 422146 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 702145 Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa
Authors: Z. Mmango, U. Nwodo, L. V. Mabinya, A. I. Okoh
Abstract:
Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance.Keywords: carboxyl methyl cellulose, birchwood xylan, optimization, cellulase, xylanase, micrococcus, DNS method
Procedia PDF Downloads 3542144 Physico-Chemical and Antibacterial Properties of Neem Extracts
Authors: C. C. Igwe
Abstract:
Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus
Procedia PDF Downloads 742143 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions
Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani
Abstract:
To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.Keywords: correlation, drought stress, factor analysis, rapeseed
Procedia PDF Downloads 1902142 Salinity Response of Some Chickpea (Cicer arietinum L.) Genotypes in Germination and Seedling Growth of Periods
Authors: Onder Aldemir, Ercan Ceyhan
Abstract:
The research was conducted to determine effects of salt concentrations on emergence and seedling development of chickpea genotypes. Trials were performed during the year of 2013 on the laboratory and greenhouse of Agricultural Faculty, Selcuk University. Emergency trial was set up according to ‘Randomized Plots Design’ by two factors and four replications; greenhouse trial was also set up according to ‘Randomized Plots Design’ by two factors with three replications. The chickpea genotypes; CA119, CA132, CA149, CA150, CA215, CA222, CA235, CA261, Bozkır and Gokce were used as material for both of the trials. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility, length of shoot and root, fresh weight of shoot and root, dry weight of shoot and root, index of salt tolerance were evaluated. Responses of the chickpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the chickpea genotypes showed significant reduction by depending on the increasing salt level. According to the effects of salt application, the chickpea genotypes Gokce, CA215 and CA222 were the most tolerant in respect to plant dry weights while the chickpea genotypes CA149 and CA150 were the most sensitive.Keywords: chickpea, emergence, salt tolerant, seedling development
Procedia PDF Downloads 2342141 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design
Procedia PDF Downloads 1782140 Application of Bacteriophage and Essential Oil to Enhance Photocatalytic Efficiency
Authors: Myriam Ben Said, Dhekra Trabelsi, Faouzi Achouri, Marwa Ben Saad, Latifa Bousselmi, Ahmed Ghrabi
Abstract:
This present study suggests the use of biological and natural bactericide, cheap, safe to handle, natural, environmentally benign agents to enhance the conventional wastewater treatment process. In the same sense, to highlight the enhancement of wastewater photocatalytic treatability, we were used virulent bacteriophage(s) and essential oils (EOs). The pre-phago-treatment of wastewater with lytic phage(s), leads to a decrease in bacterial density and, consequently, limits the establishment of intercellular communication (QS), thus preventing biofilm formation and inhibiting the expression of other virulence factors after photocatalysis. Moreover, to increase the photocatalytic efficiency, we were added to the secondary treated wastewater 1/1000 (w/v) of EO of thyme (T. vulgaris). This EO showed in vitro an anti-biofilm activity through the inhibition of plonctonic cell mobility and their attachment on an inert surface and also the deterioration of the sessile structure. The presence of photoactivatable molecules (photosensitizes) in this type of oil allows the optimization of photocatalytic efficiency without hazards relayed to dyes and chemicals reagent. The use of ‘biological and natural tools’ in combination with usual water treatment process can be considered as a safety procedure to reduce and/or to prevent the recontamination of treated water and also to prevent the re-expression of virulent factors by pathogenic bacteria such as biofilm formation with friendly processes.Keywords: biofilm, essential oil, optimization, phage, photocatalysis, wastewater
Procedia PDF Downloads 1542139 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science
Authors: Jitendra Aswani
Abstract:
In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm
Procedia PDF Downloads 4242138 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1312137 Sub-Acute Toxicity Studies on Aqueous Leaf Extract of Acalypha wilkesiana in Albino Rats
Authors: G. E. Forcados, M. L. Shu, C. N. Chinyere
Abstract:
Acalypha wilkesiana is a medicinal plant commonly used in most parts of West Africa as a decoction in treating several human diseases. Existing literature on its toxicity is predominantly on the organic extracts in contrast to the routine use of hot aqueous extracts as decoction. The aim of this study was to examine the phytochemical profile and sub-acute toxicity of A. wilkesiana leaf extracts in albino rats. Three groups of 8 experimental rats each were administered 300 mg/kg, 600 mg/kg and 1200 mg/kg body weight per day for 14 days while a fourth (control) group took tap-water. On day 15, the rats were sacrificed, and blood collected. Biochemical and hematological parameters were analysed and histopathological examination of liver and kidney were performed. There was significant increase (p<0.05) in the levels of some biochemical parameters (AST, ALT, creatinine, urea) in all the test groups compared to control. Histopathological examination of the liver revealed centrilobular degeneration and necrosis with sinusoidal dilatation as well as polymorphonuclear and mononuclear infiltration, likewise severe glomerular and tubular degeneration and necrosis with hemorrhage in the kidney at all dose levels. The results from this study suggest that aqueous leaf extract of A. wilkesiana is hepatotoxic and nephrotoxic at dose levels of 300 mg/kg and above. Therefore, precautionary measures are necessary for home use of the leaf extract of A. wilkesiana.Keywords: acute toxicity, A. wilkesiana, aqeous extract, albino rats, biochemical and haematological parameters, histopathological examination
Procedia PDF Downloads 4372136 Ex Situ Conservation of Neutraceutical Banana-Musa paradisiaca cv. Karibale Monthan
Authors: V. Krishna, Shashikumar
Abstract:
Edible Bananas (Musa spp.) are the major staple food for rural and urban consumers in India and an important source of rural income. The cultivar Musa paradisiaca cv. Karibale Monthan is an endemic cultivar of Malnad region of Karnataka and used as a glomolueroprotective neutraceutical to solve kidney problems. The protocol for mass multiplication of plantlets for this indigenous banana cultivar Karibale Monthan has not yet been standardized so far. In the present study, an attempt has been made to develop high frequency in vitro regeneration protocol and evaluation of morphoagronomic characteristics in the farmyard. The high frequency shoot initiation (93.33 %) was recorded at the synergetic effect of BAP (2 to 8mg/L), TDZ (0.1 to 1.2mg/L) and coconut water (0.1 to 1.2ml/L). It was optimized at the concentration 5 mg/l BAP, 0.5 mg/l TDZ and 0.5 ml/l coconut water with 15.90 ± 1.66 frequency of shoots per propagule. Supplementation of 1.0 mg/l IBA induces 5.33 ± 1.21 numbers of roots with a mean root length of 7.50 ± 1.87 roots. 99% of plantlets with distinct roots and shoots were successfully acclimatized in the green house and transferred to the field to evaluate the agro-morphological variations. The micropropagated plants showed significantly higher morphometric values for height of the plant (16.80±2.17), number of leaves (12.40±1.14), length of the bunch (56.20±2.17), weight of the bunch (13.60±1.14), number of hands in a bunch (11.40±1.14) and girth of the pseudostem (49.80±1.48) when compared with in vivo plants.Keywords: banana cv. Karibale Monthan, neutraceutical, high-frequency regeneration, morphometric evaluation
Procedia PDF Downloads 2872135 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions
Authors: C. E. Sutton, A. Varvani-Farahani
Abstract:
Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites
Procedia PDF Downloads 4032134 Potential of Nymphaea lotus (Nymphaeaceae) in the Treatment of Metoclopramide-Induced Hyperprolactinemia in Female Wistar Rats
Authors: O. J. Sharaibi, O. T. Ogundipe, O. A. Magbagbeola, M. I. Kazeem, A. J. Afolayan, M. T. Yakubu
Abstract:
Hyperprolactinemia is a condition of elevated levels of serum prolactin in humans. It is one of the major causes of female infertility because, excess prolactin inhibits gonadotropin secretion. When gonadotropin is low, follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretions are low and so, do not stimulate gamete production and gonadal steroid synthesis. The aim of this study is to identify and investigate indigenous medicinal plants that can be used in the treatment of hyperprolactinemia. Based on the frequency of mentioning during the ethnobotanical survey, Nymphaea lotus L. was selected for studies. The prolactin-lowering potential of aqueous extract of N. lotus and its effects on other female reproductive hormones in comparison with bromocritptine was evaluated by inducing hyperprolactinemia with metoclopramide at a dose of 5 mg/kg body weight of the animals for 21 days and then administered various doses of aqueous extract of N. lotus for another 21 days. Aqueous extract of N. lotus at 50, 100 and 200 mg/kg body weight significantly reduced the serum prolactin levels in female Wistar rats by 40.06, 52.60 and 61.92 % respectively. The extract at 200 mg/kg body weight had higher prolactin-lowering effect (61.92%) than bromocriptine (53.53%). Aqueous extract of N. lotus significantly increased (p < 0.05) the serum concentrations of FSH, LH and progesterone while estradiol concentrations were reduced. This study shows that Nymphaea lotus is a medicinal plant that can be used in the treatment of hyperprolactinemia.Keywords: hyperprolactinemia, infertility, metoclopramide, Nymphaea lotus
Procedia PDF Downloads 2872133 Development and Characterization of Polymorphic Genomic-SSR Markers in Asian Long-Horned Beetle (Anoplophora glabripennis)
Authors: Zhao Yang Liu, Jing Tao
Abstract:
The Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiinae), is a wood-borer and polyphagous xylophages native to Asia and killing healthy trees. As it causes serious danger to trees, the beetle has been paid close attention in the world. However, the genetic markers limited, especially microsatellite. In this study, 24 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies and linkage map construction, were developed and characterized from whole genome shotgun sequences. We developed SSR loci of 2 to 6 repeated and perfect units including 9895 points, the density of SSRs was found one SSR per 56.57 kb and the abundance of SSR was 0.02/kb, besides 140 types of repeats motifs were found. Half of the 48 pairs SSR primers (containing 4 di-, 7 tri-, 2 tetra- and 11 hexamers SSRs) we selected randomly from 1222 pairs of primers were polymorphism. The number of alleles for these markers in 48 individuals varied from 3 to 21 with an average of 7.71, the number of effective alleles ranged from 1.22 to 9.97 with an average of 3.54. Besides this, the polymorphic information content (PIC) ranged from 0.18 to 0.89 with a mean of 0.65, And Shannon's Information index (I) ranged from 0.46 to 2.62 with an average of 1.44. The results suggest that the method for screening of SSR in the whole genome is feasible and efficient. SSR markers developed in this study can be used for population genetic studies of A. glabripennis. Moreover, they may also be helpful for the development of microsatellites for other Coleoptera.Keywords: SSR markers, Anoplophora glabripennis, genetic diversity, whole genome
Procedia PDF Downloads 3892132 Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers
Authors: Mai M. Farid, Mona El-Shabrawy, Sameh R. Hussein, Ahmed Elkhateeb, El-Said S. Abdel-Hameed, Mona M. Marzouk
Abstract:
Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers.Keywords: Anthraquinones, Asphodelus aestivus, Cytotoxic activity, Flavonoids, LC-ESI-MS/MS
Procedia PDF Downloads 222