Search results for: non-formal learning contexts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7964

Search results for: non-formal learning contexts

3314 Promoting Libraries' Services and Events by Librarians Led Instagram Account: A Case Study on Qatar National Library's Research and Learning Instagram Account

Authors: Maryam Alkhalosi, Ahmad Naddaf, Rana Alani

Abstract:

Qatar National Library has its main accounts on social media, which presents the general image of the library and its daily news. A paper will be presented based on a case study researching the outcome of having a separate Instagram account led by librarians, not the Communication Department of the library. The main purpose of the librarians-led account is to promote librarians’ services and events, such as research consultation, reference questions, community engagement programs, collection marketing, etc. all in the way that librarians think it reflects their role in the community. Librarians had several obstacles to help users understanding librarians' roles. As was noticed that Instagram is the most popular social media platform in Qatar, it was selected to promote how librarians can help users through a focused account to create a direct channel between librarians and users. Which helps librarians understand users’ needs and interests. This research will use a quantitative approach depending on the case study, librarians have used their case in the department of Research and learning to find out the best practices might help in promoting the librarians' services and reaching out to a bigger number of users. Through the descriptive method, this research will describe the changes observed in the numbers of community users who interact with the Instagram account and engaged in librarians’ events. Statistics of this study are based on three main sources: 1. The internal monthly statistics sheet of events and programs held by the Research and Learning Department. 2. The weekly tracking of the Instagram account statistics. 3. Instagram’s tools such as polls, quizzes, questions, etc. This study will show the direct effect of a librarian-led Instagram account on the number of community members who participate and engage in librarian-led programs and services. In addition to highlighting the librarians' role directly with the community members. The study will also show the best practices on Instagram, which helps reaching a wider community of users. This study is important because, in the region, there is a lack of studies focusing on librarianship, especially on contemporary problems and its solution. Besides, there is a lack of understanding of the role of a librarian in the Arab region. The research will also highlight how librarians can help the public and researchers as well. All of these benefits can come through one popular easy channel in social media. From another side, this paper is a chance to share the details of this experience starting from scratch, including the phase of setting the policy and guidelines of managing the social media account, until librarians reached to a point where the benefits of this experience are in reality. This experience had even added many skills to the librarians.

Keywords: librarian’s role, social media, instagram and libraries, promoting libraries’ services

Procedia PDF Downloads 96
3313 The Educational Philosophies and Teaching Style Preferences of College Faculty at Selected Universities in the South of Metro Manila

Authors: Grace D. Severo, Lopita U. Jung

Abstract:

This study aimed to determine the educational philosophies and teaching styles of the college faculty of the University of Perpetual Help System DALTA in the campuses of Las-Piñas, Molino, and Calamba, south of Metro Manila. It sought to determine the relationships of educational philosophy and teaching styles of the college faculty vis-à-vis the university system’s educational philosophies and teaching style preferences. A hundred and five faculty members from the Colleges of Education, Arts and Sciences responded to the survey during the academic year 2014-2015. The Philosophy of Adult Education Inventory measured the faculty’s preferred educational philosophies. The Principles of Adult Learning Scale measured the faculty’s teaching style preference. Findings show that there is a similarity between the university system and the faculty members in using the progressive educational philosophy, however both contrasted in the preferred teaching style. Majority of the faculty held progressive educational philosophy but their preference for teacher-centered teaching style did not match. This implies that the majority are certain of having progressive educational philosophy but are not utilizing the learner-centered teaching styles; a high degree of support and commitment to practice a progressive and humanist philosophical orientation in education; and a high degree of support on teacher-centered teaching style promotion from the institution can strengthen a high degree of commitment for the faculty to enunciate their values and practice through these educational philosophies and teaching styles.

Keywords: educational philosophies, teaching styles, philosophy of adult education inventory, principles of adult learning scale

Procedia PDF Downloads 367
3312 Coping Mechanisms for Families in Raising a Child with Disability in Bangladesh: Family Members' Perspectives

Authors: Reshma P. Nuri, Ebenezer Dassah

Abstract:

Introduction: Raising a child with a disability can affect family members in different ways. However, this can be determined by the way in which a family member copes with the situation. There is little research that explores how families develop coping strategies to overcome barriers in raising CWDs. Objective: This study explored family members’ coping mechanism in raising a child with disability in Bangladesh. Method: A qualitative approach that involved 20 interviews with family members of CWDs. A purposive sampling procedure was used in selecting the study participants. A digital recorder was used to record all the interviews. Transcriptions were done in Bengali, translated into English, and then imported to NVivo software 12 for analysis. Thematic analysis was used to analyze the data. Results: The study revealed that family members adopted different coping strategies for their CWDs, including seeking support from formal (e.g., service providers) and informal sources (family members and friends); relying on religious beliefs; accepting the situation. Additionally, to cope with extra cost in raising CWDs, family members strategies included relying on overtime work; borrowing money from financial institutions; selling or mortgaging assets; and replying on donations from community members. Finally, some families had to reduce spending on food and buying toys for their CWDs. Conclusion: This qualitative study highlighted a range of coping mechanism adopted by family members in Bangladesh. The information provided in this study is potentially important to policy makers and service providers as it presents evidence on the coping mechanism of families in raising their CWDs. This underscores the need for policy design and service delivery in government support system in Bangladesh and potentially in other low- and middle-income contexts.

Keywords: Bangladesh, children with disabilities, coping mechanism, family members

Procedia PDF Downloads 202
3311 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 362
3310 The Role of Metaphor in Communication

Authors: Fleura Shkëmbi, Valbona Treska

Abstract:

In elementary school, we discover that a metaphor is a decorative linguistic device just for poets. But now that we know, it's also a crucial tactic that individuals employ to understand the universe, from fundamental ideas like time and causation to the most pressing societal challenges today. Metaphor is the use of language to refer to something other than what it was originally intended for or what it "literally" means in order to suggest a similarity or establish a connection between the two. People do not identify metaphors as relevant in their decisions, according to a study on metaphor and its effect on decision-making; instead, they refer to more "substantive" (typically numerical) facts as the basis for their problem-solving decision. Every day, metaphors saturate our lives via language, cognition, and action. They argue that our conceptions shape our views and interactions with others and that concepts define our reality. Metaphor is thus a highly helpful tool for both describing our experiences to others and forming notions for ourselves. In therapeutic contexts, their shared goal appears to be twofold. The cognitivist approach to metaphor regards it as one of the fundamental foundations of human communication. The benefits and disadvantages of utilizing the metaphor differ depending on the target domain that the metaphor portrays. The challenge of creating messages and surroundings that affect customers' notions of abstract ideas in a variety of industries, including health, hospitality, romance, and money, has been studied for decades in marketing and consumer psychology. The aim of this study is to examine, through a systematic literature review, the role of the metaphor in communication and in advertising. This study offers a selected analysis of this literature, concentrating on research on customer attitudes and product appraisal. The analysis of the data identifies potential research questions. With theoretical and applied implications for marketing, design, and persuasion, this study sheds light on how, when, and for whom metaphoric communications are powerful.

Keywords: metaphor, communication, advertising, cognition, action

Procedia PDF Downloads 99
3309 A Critical Exploration of Dominant Perspectives Regarding Inclusion and Disability: Shifts Toward Meaningful Approaches

Authors: Luigi Iannacci

Abstract:

This study critically explores how disability and disability are presently and problematically configured within education. As such, pedagogies, discourses, and practices that shape this configuration are examined to forward a reconceptualization of disability as it relates to education and the inclusion of students with special needs in mainstream classroom contexts. The study examines how the dominant medical/deficit model of disability positions students with special needs and advocates for a shift towards a social/critical model of disability as applied to education and classrooms. This is demonstrated through a critical look at how language, processes, and ‘interventions’ name and address deficits people who have a disability are presumed to have and, as such, conceptualize these deficits as inherent flaws that are in need of ‘fixing.’ The study will demonstrate the necessary shifts in thinking, language and practice required to forward a critical/social model of disability. The ultimate aim of this research is to offer a much-needed reconceptualization of inclusion that recognizes disability as epistemology, identity, and diversity through a critical exploration of dominant discourses that impact language, policy, instruction and ultimately, the experiences students with disabilities have within mainstream classrooms. The presentation seeks to explore disability as neurodiversity and therefore elucidate how people with disabilities can demonstrate these ways of knowing within inclusive education that avoids superficial approaches that are not responsive to their needs. This research is, therefore, of interest and use to educators teaching at the elementary, secondary, and in-service levels as well as graduate students and scholars working in the areas of inclusion, special education, and literacy. Ultimately the presentation attempts to foster a social justice and human rights-focused approach to inclusion that is responsive to students with disabilities and, as such ensures a reconceptualization of present language, understandings and practices that continue to configure disability in problematic ways.

Keywords: inclusion, disability, critical approach, social justice

Procedia PDF Downloads 75
3308 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
3307 Understanding the Factors behind Graduate Employability in the United Arab Emirates

Authors: Mohammed Islam

Abstract:

Graduate employability is a well debated topic by governments, employers, and higher education institutes (HEI) across the world. Much of the focus of these debates have centred around the skills that graduates bring or should bring to the job market, a point echoed by United Arab Emirates (UAE) policy makers and employers. While some research has been carried out on graduates' employability skills, little or no attention has been paid to the forces at play in developing employability policy and its subsequent implementation. The focus of debate has been on a perceived skills gap rather than policy. Recognising a gap in the literature, this paper details a study of UAE employability policy development. Taking a social constructionist approach, this case study views policy as discursive and socially constructed through interactions with key stakeholders. It is within the myriad of interdependent socio-political factors and social practices, particularly power relationships, that this paper explores UAE policy on graduate employability. In doing so, this adds to the debate on graduate employability from the perspective of policy and explores its roots in the interaction between human activity and the ‘system’. Data was collected from two main sources: documentary review and semi-structured interviews. Policies and publicly stated rhetoric on graduate employability were analysed using Critical Discourse Analysis. Semi-structured interviews with representatives from policy makers, HEIs, and employers were reviewed through Thematic Analysis. The theoretical framework for the discussion of findings draws from social practice theories and highlights the factors at play in access to employment for UAE graduates. This case study presents a methodological approach to policy studies that can be applied beyond the context under investigation. Education policy researchers are provided with an opportunity to compare similarities and differences with their own specific contexts.

Keywords: critical discourse analysis, employability, methodology, policy, social constructionism

Procedia PDF Downloads 127
3306 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 137
3305 Effect of Coaching Related Incompetency to Stand Trial on Symptom Validity Test: Robustness, Sensitivity, and Specificity

Authors: Natthawut Arin

Abstract:

In forensic contexts, competency to stand trial assessments are the most common referrals. The defendants may attempt to endorse psychopathology symptoms and feign incompetent. Coaching, which can be teaching them test-taking strategies to avoid detection of psychopathological symptoms feigning. Recently, the Symptom Validity Testings (SVTs) were created to detect feigning. Moreover, the works of the literature showed that the effects of coaching on SVTs may be more robust to the effects of coaching. Thai Symptom Validity Test (SVT-Th) was designed as SVTs which demonstrated adequate psychometric properties and ability to classify between feigners and honest responders. Thus, the current study to examine the utility as the robustness of SVT-Th in the detection of feigned psychopathology. Participants consisted of 120 were recruited from undergraduate courses in psychology, randomly assigned to one of three groups. The SVT-Th was administered to those three scenario-experimental groups: (a) Uncoached group were asked to respond honestly (n=40), (b) Symptom-coached without warning group were asked to feign psychiatric symptoms to gain incompetency to stand trial (n=40), while (c) Test-coached with warning group were asked to feign psychiatric symptoms to avoid test detection but being incompetency to stand trial (n=40). Group differences were analyzed using one-way ANOVAs. The result revealed an uncoached group (M = 4.23, SD.= 5.20) had significantly lower SVT-Th mean scores than those both coached groups (M =185.00, SD.= 72.88 and M = 132.10, SD.= 54.06, respectively). Classification rates were calculated to determine the classification accuracy. Result indicated that SVT-Th had overall classification accuracy rates of 96.67% with acceptable of 95% sensitivity and 100% specificity rates. Overall, the results of the present study indicate that the SVT-Th yielded high adequate indices of accuracy and these findings suggest that the SVT-Th is robustness against coaching.

Keywords: incompetency to stand trial, coaching, robustness, classification accuracy

Procedia PDF Downloads 138
3304 Harnessing Community Benefits; Case Study of REDD+ in Ghana

Authors: Abdul-Razak Saeed

Abstract:

Addressing the climate change crisis that this generation faces has evolved to include the consideration of a policy mechanism referred to as reduced emissions from deforestation and forest degradation with plus components of conservation, sustainable forest management and enhancement of forest carbon stocks (REDD+). REDD+ emerged from the International level of UNFCCC but its implementation is by developing countries. It challenges the development paradigm of nations that depend on the unsustainable clearing of forests and land use change for economic development whilst posing as an opportunity or risk for forest community livelihoods, institutions and their interaction with the forest resources. As a novel policy mechanism, it is imperative to gain global insight into local contexts of its implementation and to understand local level mobilization of their agency for institutional sustainability as reconfigured by new carbon economy initiatives like REDD+. Using a systematic review process, as the initial stages of this study, secondary data of REDD+ projects across the globe were evaluated to pick up gaps in research and that of on ground REDD+ implementation. Primary data was gathered from 30 actors in the government, NGO, private sector and traditional authorities using face-to-face semi structured interviews in Ghana; participation in meetings and workshops and policy and strategy document reviews. Preliminary findings of the study include REDD+ knowledge being a key determinant of power distribution and affects who shapes the process; in Ghana, informal relationships are playing key roles in advancing REDD+ unlike in traditional forestry and a subjectivity shift of local communities from an 'emotive-link' of environmental care to one of 'economic self-seeking and enriching' domain of thought.

Keywords: climate change, communities, forests, REDD+

Procedia PDF Downloads 369
3303 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
3302 Advances and Challenges in Assessing Students’ Learning Competencies in 21st Century Higher Education

Authors: O. Zlatkin-Troitschanskaia, J. Fischer, C. Lautenbach, H. A. Pant

Abstract:

In 21st century higher education (HE), the diversity among students has increased in recent years due to the internationalization and higher mobility. Offering and providing equal and fair opportunities based on students’ individual skills and abilities instead of their social or cultural background is one of the major aims of HE. In this context, valid, objective and transparent assessments of students’ preconditions and academic competencies in HE are required. However, as analyses of the current states of research and practice show, a substantial research gap on assessment practices in HE still exists, calling for the development of effective solutions. These demands lead to significant conceptual and methodological challenges. Funded by the German Federal Ministry of Education and Research, the research program 'Modeling and Measuring Competencies in Higher Education – Validation and Methodological Challenges' (KoKoHs) focusses on addressing these challenges in HE assessment practice by modeling and validating objective test instruments. Including 16 cross-university collaborative projects, the German-wide research program contributes to bridging the research gap in current assessment research and practice by concentrating on practical and policy-related challenges of assessment in HE. In this paper, we present a differentiated overview of existing assessments of HE at the national and international level. Based on the state of research, we describe the theoretical and conceptual framework of the KoKoHs Program as well as results of the validation studies, including their key outcomes. More precisely, this includes an insight into more than 40 developed assessments covering a broad range of transparent and objective methods for validly measuring domain-specific and generic knowledge and skills for five major study areas (Economics, Social Science, Teacher Education, Medicine and Psychology). Computer-, video- and simulation-based instruments have been applied and validated to measure over 20,000 students at the beginning, middle and end of their (bachelor and master) studies at more than 300 HE institutions throughout Germany or during their practical training phase, traineeship or occupation. Focussing on the validity of the assessments, all test instruments have been analyzed comprehensively, using a broad range of methods and observing the validity criteria of the Standards for Psychological and Educational Testing developed by the American Educational Research Association, the American Economic Association and the National Council on Measurement. The results of the developed assessments presented in this paper, provide valuable outcomes to predict students’ skills and abilities at the beginning and the end of their studies as well as their learning development and performance. This allows for a differentiated view of the diversity among students. Based on the given research results practical implications and recommendations are formulated. In particular, appropriate and effective learning opportunities for students can be created to support the learning development of students, promote their individual potential and reduce knowledge and skill gaps. Overall, the presented research on competency assessment is highly relevant to national and international HE practice.

Keywords: 21st century skills, academic competencies, innovative assessments, KoKoHs

Procedia PDF Downloads 140
3301 Co-Creation of Content with the Students in Entrepreneurship Education to Capture Entrepreneurship Phenomenon in an Innovative Way

Authors: Prema Basargekar

Abstract:

Facilitating the subject ‘Entrepreneurship Education’ in higher education, such as management studies, can be exhilarating as well as challenging. It is a multi-disciplinary and ever-evolving subject. Capturing entrepreneurship as a phenomenon in a holistic manner is a daunting task as it requires covering various dimensions such as new ideas generation, entrepreneurial traits, business opportunities scanning, the role of policymakers, value creation, etc., to name a few. Implicit entrepreneurship theory and effectuation are two different theories that focus on engaging the participants to create content by using their own experiences, perceptions, and belief systems. It helps in understanding the phenomenon holistically. The assumption here is that all of us are part of the entrepreneurial ecosystem, and effective learning can come through active engagement and peer learning by all the participants together. The present study is an attempt to use these theories in the class assignment given to the students at the beginning of the course to build the course content and understand entrepreneurship as a phenomenon in a better way through peer learning. The assignment was given to three batches of MBA post-graduate students doing the program in one of the private business schools in India. The subject of ‘Entrepreneurship Management’ is facilitated in the third trimester of the first year. At the beginning of the course, the students were given the assignment to submit a brief write-up/ collage/picture/poem or in any other format about “What entrepreneurship means to you?” They were asked to give their candid opinions about entrepreneurship as a phenomenon as they perceive it. Nearly 156 students doing post-graduate MBA submitted the assignment. These assignments were further used to find answers to two research questions. – 1) Are students able to use divergent and innovative forms to express their opinions, such as poetry, illustrations, videos, etc.? 2) What are various dimensions of entrepreneurship which are emerging to understand the phenomenon in a better way? The study uses the Brawn and Clark framework of reflective thematic analysis for qualitative analysis. The study finds that students responded to this assignment enthusiastically and expressed their thoughts in multiple ways, such as poetry, illustration, personal narrative, videos, etc. The content analysis revealed that there could be seven dimensions to looking at entrepreneurship as a phenomenon. They are 1) entrepreneurial traits, 2) entrepreneurship as a journey, 3) value creation by entrepreneurs in terms of economic and social value, 4) entrepreneurial role models, 5) new business ideas and innovations, 6) personal entrepreneurial experiences and aspirations, and 7) entrepreneurial ecosystem. The study concludes that an implicit approach to facilitate entrepreneurship education helps in understanding it as a live phenomenon. It also encourages students to apply divergent and convergent thinking. It also helps in triggering new business ideas or stimulating the entrepreneurial aspirations of the students. The significance of the study lies in the application of implicit theories in the classroom to make higher education more engaging and effective.

Keywords: co-creation of content, divergent thinking, entrepreneurship education, implicit theory

Procedia PDF Downloads 74
3300 Enhancing English Language Learning through Learners Cultural Background

Authors: A. Attahiru, Rabi Abdullahi Danjuma, Fatima Bint

Abstract:

Language and culture are two concepts which are closely related that one affects the other. This paper attempts to examine the definition of language and culture by discussing the relationship between them. The paper further presents some instructional strategies for the teaching of language and culture as well as the influence of culture on language. It also looks at its implication to language education and finally some recommendation and conclusion were drawn.

Keywords: culture, language, relationship, strategies, teaching

Procedia PDF Downloads 415
3299 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan

Authors: Aroona Hashmi

Abstract:

An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.

Keywords: psychological effects, economic recession, educated youth, environmental factors

Procedia PDF Downloads 388
3298 How Autonomous Vehicles Transform Urban Policies and Cities

Authors: Adrián P. Gómez Mañas

Abstract:

Autonomous vehicles have already transformed urban policies and cities. This is the main assumption of our research, which aims to understand how the representations of the possible arrival of autonomous vehicles already transform priorities or actions in transport and more largely, urban policies. This research is done within the framework of a Ph.D. doctorate directed by Professor Xavier Desjardins at the Sorbonne University of Paris. Our hypotheses are: (i) the perspectives, representations, and imaginaries on autonomous vehicles already affect the stakeholders of urban policies; (ii) the discourses on the opportunities or threats of autonomous vehicles reflect the current strategies of the stakeholders. Each stakeholder tries to integrate a discourse on autonomous vehicles that allows them to change as little as possible their current tactics and strategies. The objective is to eventually make a comparison between three different cases: Paris, United Arab Emirates, and Bogota. We chose those territories because their contexts are very different, but they all have important interests in mobility and innovation, and they all have started to reflect on the subject of self-driving mobility. The main methodology used is to interview actors of the metropolitan area (local officials, leading urban and transport planners, influent experts, and private companies). This work is supplemented with conferences, official documents, press articles, and websites. The objective is to understand: 1) What they know about autonomous vehicles and where does their knowledge come from; 2) What they expect from autonomous vehicles; 3) How their ideas about autonomous vehicles are transforming their action and strategy in managing daily mobility, investing in transport, designing public spaces and urban planning. We are going to present the research and some preliminary results; we will show that autonomous vehicles are often viewed by public authorities as a lever to reach something else. We will also present that speeches are very influenced by local context (political, geographical, economic, etc.), creating an interesting balance between global and local influences. We will analyze the differences and similarities between the three cases and will try to understand which are the causes.

Keywords: autonomous vehicles, self-driving mobility, urban planning, urban mobility, transport, public policies

Procedia PDF Downloads 198
3297 Application of the Sufficiency Economy Philosophy to Integrated Instructional Model of In-Service Teachers of Schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office

Authors: Kathaleeya Chanda

Abstract:

The schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn in Nakhonnayok Educational Service Area Office are the small schools, situated in a remote and undeveloped area.Thus, the school-age youth didn’t have or have fewer opportunities to study at the higher education level which can lead to many social and economic problems. This study aims to solve these educational issues of the schools, under The Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office, by the development of teachers, so that teachers could develop teaching and learning system with the ultimate goal to increase students’ academic achievement, increase the educational opportunities for the youth in the area, and help them learn happily. 154 in-service teachers from 22 schools and 4 different districts in Nakhonnayok participated in this teacher training. Most teachers were satisfied with the training content and the trainer. Thereafter, the teachers were given the test to assess the skills and knowledge after training. Most of the teachers earned a score higher than 75%. Accordingly, it can be concluded that after attending the training, teachers have a clear understanding of the contents. After the training session, the teachers have to write a lesson plan that is integrated or adapted to the Sufficiency Economy Philosophy. The teachers can either adopt intradisciplinary or interdisciplinary integration according to their actual teaching conditions in the school. Two weeks after training session, the researchers went to the schools to discuss with the teachers and follow up the assigned integrated lesson plan. It was revealed that the progress of integrated lesson plan could be divided into 3 groups: 1) the teachers who have completed the integrated lesson plan, but are concerned about the accuracy and consistency, 2) teachers who almost complete the lesson plan or made a great progress but are still concerned, confused in some aspects and not fill in the details of the plan, and 3), the teachers who made few progress, are uncertain and confused in many aspects, and may had overloaded tasks from their school. However, a follow-up procedure led to the commitment of teachers to complete the lesson plan. Regarding student learning assessment, from an experiment teaching, most of the students earned a score higher than 50 %. The rate is higher than the one from actual teaching. In addition, the teacher have assessed that the student is happy, enjoys learning, and providing a good cooperates in teaching activities. The students’ interview about the new lesson plan shows that they are happy with it, willing to learn, and able to apply such knowledge in daily life. Integrated lesson plan can increases the educational opportunities for youth in the area.

Keywords: sufficiency, economy, philosophy, integrated education syllabus

Procedia PDF Downloads 187
3296 Investigating Students' Understanding about Mathematical Concept through Concept Map

Authors: Rizky Oktaviana

Abstract:

The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.

Keywords: concept map, concept mapping, mathematical concepts, understanding

Procedia PDF Downloads 271
3295 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 187
3294 Rationalizing the Utilization of Interactive Engagement Strategies in Teaching Specialized Science Courses of STEM and GA Strands in the Academic Track of Philippine Senior High School Curriculum

Authors: Raul G. Angeles

Abstract:

The Philippine government instituted major reforms in its educational system. The Department of Education pushes the K to 12 program that makes kindergarten mandatory and adds two years of senior high school to the country's basic education. In essence, the students’ stay in basic education particularly those who are supposedly going to college is extended. The majority of the students expressed that they will be taking the Academic Track of the Senior High School curriculum specifically the Science, Technology, Engineering and Mathematics (STEM) and General Academic (GA) strands. Almost certainly, instruction should match the students' styles and thus through this descriptive study a city survey was conducted to explore the teaching strategies preferences of junior high school students and teachers who will be promoted to senior high school during the Academic Year 2016-2017. This study was conducted in selected public and private secondary schools in Metro Manila. Questionnaires were distributed to students and teachers; and series of follow-up interviews were also carried out to generate additional information. Preferences of students are centered on employing innovations such as technology, cooperative and problem-based learning. While the students will still be covered by basic education their interests in science are sparking to a point where the usual teaching styles may no longer work to them and for that cause, altering the teaching methods is recommended to create a teacher-student style matching. Other effective strategies must likewise be implemented.

Keywords: curriculum development, effective teaching strategies, problem-based learning, senior high school, science education, technology

Procedia PDF Downloads 259
3293 Play Based Practices in Early Childhood Curriculum: The Contribution of High Scope, Modern School Movement and Pedagogy of Participation

Authors: Dalila Lino

Abstract:

The power of play for learning and development in early childhood education is beyond question. The main goal of this study is to analyse how three contemporary early childhood pedagogical approaches, the High Scope, the Modern School Movement (MEM) and the Pedagogy of Participation integrate play in their curriculum development. From this main goal the following objectives emerged: (i) to characterize how play is integrated in the daily routine of the pedagogical approaches under study; (ii) to analyse the teachers’ role during children’s playing situations; (iii) to identify the types of play that children are more often involved. The methodology used is the qualitative approach and is situated under the interpretative paradigm. Data is collected through semi-structured interviews to 30 preschool teachers and through observations of typical daily routines. The participants are 30 Portuguese preschool classrooms attending children from 3 to 6 years and working with the High Scope curriculum (10 classrooms), the MEM (10 classrooms) and the Pedagogy of Participation (10 classrooms). The qualitative method of content analysis was used to analyse the data. To ensure confidentiality, no information is disclosed without participants' consent, and the interviews were transcribed and sent to the participants for a final revision. The results show that there are differences how play is integrated and promoted in the three pedagogical approaches. The teachers’ role when children are at play varies according the pedagogical approach adopted, and also according to the teachers’ understanding about the meaning of play. The study highlights the key role that early childhood curriculum models have to promote opportunities for children to play, and therefore to be involved in meaningful learning.

Keywords: curriculum models, early childhood education, pedagogy, play

Procedia PDF Downloads 207
3292 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 70
3291 Forecast Combination for Asset Classes: Insights on Market Efficiency and Arbitrage

Authors: Rodrigo Baggi Prieto Alvarez, Jorge Miguel Bravo

Abstract:

The Exchange-Traded Funds (ETFs) have transformed asset allocation, allowing investors to gain exposure to diverse asset classes with a single instrument. In turn, forecast combination models have emerged as advantageous methods for improving prediction accuracy. While the Efficient Market Hypothesis (EMH) posits that prices fluctuate randomly, making abnormal returns unattainable, empirical evidence reveals autocorrelation in stock returns, challenging the EMH's strict interpretation. This raises the question of whether econometric models, machine learning methods and forecast combinations can predict asset prices more effectively. Also, comparing forecasts with futures market prices may reveal potential arbitrage opportunities, offering insights into market inefficiencies. Using ETFs indices from January 1st, 2015, to September 30th, 2024, across equity markets (S&P 500, Russell 2000, MSCI Developed Markets and MSCI Emerging Markets), fixed income (7-10 Year Treasury Bond, Developed Markets Treasury Bond, Emerging Markets Treasury Bond and U.S. Corporate Bonds), commodity (Gold Shares ETF) and crypto (ProShares Bitcoin ETF), this paper tests the predictive accuracy of traditional econometric models (ARIMA, ETS), machine learning (SVM, Random Forest, XGBoost) and forecast combinations (ARIMA-SVR, ARIMA-ANN, Ridge Regression and LASSO). Preliminary results suggest that ensemble methods can indeed outperform simple models, indicating that combinations like the Ridge Regression and LASSO are superior to econometric and machine learning models individually. Also, prediction accuracy is better for fixed income ETFs, aligned with the lower volatility of these assets, while models show higher forecast error for crypto and equity ETFs. Finally, initial comparisons between forecasts and the futures market prices reveal potential inefficiencies, suggesting opportunities for spot-futures index arbitrage. Providing empirical evidence on the application of forecasting models to a significant group of financial assets, these findings contribute to discussions on market efficiency and highlight the role of ensemble methods in improving asset price predictability and portfolio management.

Keywords: ETF, asset prediction, forecast combination, EMH, spot-futures index arbitrage

Procedia PDF Downloads 4
3290 Facilitating Active Reading Strategies through Caps Chart to Foster Elementary EFL Learners’ Reading Skills and Reading Competency

Authors: Michelle Bulawan, Mei-Hua Chen

Abstract:

Reading comprehension is crucial for acquiring information, analyzing critically, and achieving academic proficiency. However, there is a lack of growth in reading comprehension skills beyond fourth grade. The developmental shift from "learning to read" to "reading to learn" occurs around this stage. Factual knowledge and diverse views in articles enhance reading comprehension abilities. Nevertheless, some face difficulties due to evolving textual requirements, such as expanding vocabulary and using longer, more complex terminology. Most research on reading strategies has been conducted at the tertiary and secondary levels, while few have focused on the elementary levels. Furthermore, the use of character, ask, problem, solution (CAPS) charts in teaching reading has also been hardly explored. Thus, the researcher decided to explore the facilitation of active reading strategies through the CAPS chart and address the following research questions: a) What differences existed in elementary EFL learners' reading competency among those who engaged in active reading strategies and those who did not? b) What are the learners’ metacognitive skills of those who engage in active reading strategies and those who do not, and what are their effects on their reading competency? c) For those participants who engage in active reading activities, what are their perceptions about incorporating active reading activities into their English classroom learning? Two groups of elementary EFL learners, each with 18 students of the same level of English proficiency, participated in this study. Group A served as the control group, while Group B served as the experimental group. Two teachers also participated in this research; one of them was the researcher who handled the experimental group. The treatment lasts for one whole semester or seventeen weeks. In addition to the CAPS chart, the researcher also used the metacognitive awareness of reading strategy inventory (MARSI) and a ten-item, five-point Likert scale survey.

Keywords: active reading, EFL learners, metacognitive skills, reading competency, student’s perception

Procedia PDF Downloads 91
3289 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 97
3288 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 160
3287 Importance of Continuous Professional Development for Teacher Educators in Myanmar Education College

Authors: Moet Moet Myint Lay

Abstract:

Continuing professional development involves acquiring new knowledge and skills for current work and improving career opportunities in the field through continuing education (OECD, 2000). This article examines the effectiveness of CPD in improving teacher quality and the resulting need for CPD for teacher educators in Myanmar. The purpose of this study is to explore a deeper understanding of teacher-to-teacher continuing professional development in improving teacher education programs. Research questions: (1) How do teachers in Myanmar understand the idea of continuous professional development for professional development? (2) What CPD activities are required for all teachers in teachers' colleges? (3) What are the main challenges of CPD implementation in Myanmar Education College? A qualitative method using semi-structured interviews was used in this study. Seven teacher educators from Mandalay Education College participated in this study. There are three male teacher educators and four female teacher educators. All participants who responded to the semi-structured interviews were between 29 and 45 years old.The interviews revealed that professional development involves acquiring the necessary pedagogical knowledge and skills to encourage students to think creatively and critically. Teachers must participate in a variety of activities, including professional interviews, lesson study, training programs, workshops, and seminars. All results showed that teachers need English and ICT skills for teaching and learning, including extended ICT courses for those who have completed a foundation course, access to e-libraries, and inclusive education (including language teaching and learning), facilitate the assessment (formative and summative), practicum, mentoring, and coaching skills. The study concludes with practical findings that suggest an urgent need for CPD activities for teachers.

Keywords: continuous professional development, teacher educator, teacher training program), mentoring

Procedia PDF Downloads 58
3286 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 154
3285 The Preparation and Training of Expert Studio Reviewers

Authors: Diane M. Bender

Abstract:

In design education, professional education is delivered in a studio, where students learn and understand their discipline. This learning methodology culminates in a final review, where students present their work before instructors and invited reviewers, known as jurors. These jurors are recognized experts who add a wide diversity of opinions in their feedback to students. This feedback can be provided in multiple formats, mainly a verbal critique of the work. To better understand how these expert reviewers prepare for a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines are involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=122) provided information about if and how they received training on how to critique and participate in a final review. Common forms of training included mentorship, modeled behavior from other designers/past professors, workshops on critique from the instructing faculty prior to the crit session, and by being a practicing design professional. Respondents also gave feedback about how much the instructor provided course materials prior to the review in order to better prepare for student interaction. Finally, respondents indicated if they had interaction, and in what format, with students prior to the final review. Typical responses included participation in studio desk crits, a midterm jury member, meetings with students, and email or social media correspondence. While the focus of this study is the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: critique, design, education, evaluation, juror

Procedia PDF Downloads 82