Search results for: comprehensive emergency care and life support
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18528

Search results for: comprehensive emergency care and life support

13908 Adoption of E-Governance: A Case Study of Higher Education Institutes in Pakistan

Authors: Shah Muhammad Butt

Abstract:

The study aimed to investigate the factors influencing the adoption of e-governance in Pakistan's public universities and how that adoption has affected organizational performance. An online Likert scale survey was utilized to gather information from 350 participants from different public universities in Pakistan. The data were examined using descriptive statistics and correlation analysis. The findings suggest that organizational culture, infrastructure, and leadership support are among the elements impacting the adoption of e-governance at Pakistan's public sector universities. A further finding of the study was that e-governance adoption benefited organizational performance, including effectiveness, efficiency, and customer satisfaction. The study emphasizes the significance of e-governance adoption at public sector universities and the demand for successful policies and strategies to support its implementation. To increase organisational performance and raise the standard of higher education in Pakistan, policymakers and university administrators should use the study's findings to develop and practice e-governance policies and initiatives.

Keywords: e-governance, adoption, public sector universities, Pakistan, organizational performance, higher education, technology, ICT, factors, comparative analysis

Procedia PDF Downloads 92
13907 A Comparative Analysis of Conventional and Organic Dairy Supply Chain: Assessing Transport Costs and External Effects in Southern Sweden

Authors: Vivianne Aggestam

Abstract:

Purpose: Organic dairy products have steadily increased with consumer popularity in recent years in Sweden, permitting more transport activities. The main aim of this study was to compare the transport costs and the environmental emissions made by the organic and conventional dairy production in Sweden. The objective was to evaluate differences and environmental impacts of transport between the two different production systems, allowing a more transparent understanding of the real impact of transport within the supply chain. Methods: A partial attributional Life Cycle Assessment has been conducted based on a comprehensive survey of Swedish farmers, dairies and consumers regarding their transport needs and costs. Interviews addressed the farmers and dairies. Consumers were targeted through an online survey. Results: Higher transport inputs from conventional dairy transportation are mainly via feed and soil management on farm level. The regional organic milk brand illustrate less initial transport burdens on farm level, however, after leaving the farm, it had equal or higher transportation requirements. This was mainly due to the location of the dairy farm and shorter product expiry dates, which requires more frequent retail deliveries. Organic consumers tend to use public transport more than private vehicles. Consumers using private vehicles for shopping trips primarily bought conventional products for which price was the main deciding factor. Conclusions: Organic dairy products that emphasise its regional attributes do not ensure less transportation and may therefore not be a more “climate smart” option for the consumer. This suggests that the idea of localism needs to be analysed from a more systemic perspective. Fuel and regional feed efficiency can be further implemented, mainly via fuel type and the types of vehicles used for transport.

Keywords: supply chains, distribution, transportation, organic food productions, conventional food production, agricultural fossil fuel use

Procedia PDF Downloads 454
13906 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

Authors: Lan Wu

Abstract:

The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Keywords: energy law, energy transition, electricity market reform, renewable energy integration

Procedia PDF Downloads 195
13905 Manual Dexterity in Patients with Motor Neuron Disease

Authors: Magdalena Barbara Kaziuk, Ilona Hubner, Jacek Hubner, Slawomir Kroczka

Abstract:

Background: The motor neuron disease is a progressive neurodegenerative disease causing malfunction. Irrespective of the form of the disease and its onset always leads to the worsening of the quality of life, with patients usually depending on the family. Materials and methods: The study included 20 persons (5 females, 15 males, aged 65,5 ± 20 years) with clinically certain or probable diagnosis of the motor neuron disease. Patients were examined three times in the period of six months. The diagnosis was established based on the criteria of El Escorial. Manual dexterity was assessed using the test of the card Rene Zazzo and the test of shading in with lines Mira Stambak. Results: All patients achieved unsatisfactory results in Rene Zazzo’s test of the card and most of the patients (60%) in Mira Stambak’s test of shading with lines. Significantly higher test results were achieved for Rene Zazzo’s test and lower test results for Mira Stambak’s test in consecutive measurements. Conclusions: Impairment of manual dexterity is present already at the moment of diagnosing the disease and is growing significantly during its course. The quality of life for MND patients undergoes gradual deterioration as a result of the malfunction.

Keywords: manual dexterity, motor neuron disease, quality of life, malfunction

Procedia PDF Downloads 341
13904 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology

Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki

Abstract:

The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.

Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine

Procedia PDF Downloads 262
13903 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm

Authors: Vahid Bayrami Rad

Abstract:

Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.

Keywords: arduino board, artificial intelligence, image processing, solenoid lock

Procedia PDF Downloads 69
13902 The Symbiotic Relation of Mythical Stories in Transforming Human Lives

Authors: Gayatri Kanwar

Abstract:

The purpose of this research paper is to explore the power of myth in changing human lives; it establishes patterns in the human psyche, affects the way of thinking, as myths unveil various subjects, ideas, and challenges. Through mythological stories one comes to understand the images behind the emotions and feelings, they influence him as it changes his thought patterns, their therapeutic sets the individual on the path of healing and transforms human lives. Every civilization in the olden times had a vast source of myths which they lived by. They were not ordinary stories of everyday life, but exemplary cases narrated through oral traditions in a sacred manner revealed the 'way to live life'. The mythical stories have a spiritual touch which brought him to the acceptance of suffering or finding a solution to his life problems. In modern times, the significance of the age old myth has lost their touch. Each one of us bears countless stories inside ourselves of our own lives and all its happenings. Therefore, each being is a natural narrator. Everybody tells stories about their lives; hence, one tends to know oneself as well as seeks understanding of others through them. When one remembers their stories they speak in narratives. As stated by Jung, these narratives grow into a personal mythology one lives by. Nonetheless, there are times when one becomes stuck in their own stories or myths. Hence, mythology can change one’s perception and can open pathways to other ways of discovering, feeling and experiencing one’s lives.

Keywords: Power of Myths, Significance of myths in modern times, Transforming human lives, Benefits to Society

Procedia PDF Downloads 402
13901 Structured Tariff Calculation to Promote Geothermal for Energy Security

Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi

Abstract:

This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.

Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation

Procedia PDF Downloads 442
13900 Mycoplasmas and Pathogenesis in Preventive Medicine

Authors: Narin Salehiyan

Abstract:

The later sequencing of the complete genomes of Mycoplasma genitalium and M. pneumoniae has pulled in significant consideration to the atomic science of mycoplasmas, the littlest self-replicating living beings. It shows up that we are presently much closer to the objective of defining, in atomic terms, the complete apparatus of a self-replicating cell. Comparative genomics based on comparison of the genomic cosmetics of mycoplasmal genomes with those of other microbes, has opened better approaches of looking at the developmental history of the mycoplasmas. There's presently strong hereditary bolster for the speculation that mycoplasmas have advanced as a department of gram-positive microbes by a handle of reductive advancement. Amid this prepare, the mycoplasmas misplaced significant parcels of their ancestors’ chromosomes but held the qualities basic for life. In this way, the mycoplasmal genomes carry a tall rate of preserved qualities, incredibly encouraging quality comment. The critical genome compaction that happened in mycoplasmas was made conceivable by receiving a parasitic mode of life. The supply of supplements from their has clearly empowered mycoplasmas to lose, amid advancement, the qualities for numerous assimilative forms. Amid their advancement and adjustment to a parasitic mode of life, the mycoplasmas have created different hereditary frameworks giving a profoundly plastic set of variable surface proteins to avoid the have safe framework.

Keywords: mycoplasma, plasma, pathogen, genome

Procedia PDF Downloads 60
13899 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub

Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi

Abstract:

This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendly

Keywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing

Procedia PDF Downloads 63
13898 Corruption, a Prelude to Problems of Governance in Pakistan

Authors: Umbreen Javaid

Abstract:

Pakistan’s experience with nascent, yet to be evolved democratic institutions inherited from the British Empire, has not been a pleasant one when evaluated in terms of good governance, development, and success of anti-corruption mechanisms. The country has remained entangled in a vicious circle of accumulating large budget deficits, dwindling economy, low foreign direct investment, political instability, and rising terrorism. It is thus not surprising that no account of the state aimed at analyzing the six-decade journey since her inception is replete with negative connotations like dysfunctional, failed, fragile or weak state. The limited pool of experience of handling democratic institutions and lack of political will be on the part of country’s political elite to transform the society on democratic footings have left Pakistan as a “limited access order” state. The widespread illiteracy becomes a double edge sword when a largely illiterate electorate elects representatives who mostly come from a semi-educated background with the limited understanding of democratic minutiae and little or no proclivity to resist monetary allures. The prevalence of culture of patronage with widespread poverty coupled with absence of a comprehensive system of investigating, prosecuting and adjudicating cases of corruption encourage the practice that has been eroding the state’s foundations since her inception owing to the unwillingness of the traditional elites who have been strongly resistant towards any attempts aimed at disseminating powers. An analytical study of the historical, political, cultural, economic and administrative hurdles that have been at work in impeding Pakistan’s transition to a democratic, accountable society would be instrumental in understanding the issue of widespread plague of corruption and state’s inefficiency to cope with it effectively. The issue of corruption in Pakistan becomes more important when seen in the context of her vulnerability to terrorism and religious extremism. In this regard, Pakistan needs to learn a lot from developed countries in order to evolve a comprehensive strategy for combating and preventing this pressing issue.

Keywords: Pakistan, corruption, anti-corruption, limited access order

Procedia PDF Downloads 306
13897 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
13896 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 308
13895 A Critical Analysis of the Current Concept of Healthy Eating and Its Impact on Food Traditions

Authors: Carolina Gheller Miguens

Abstract:

Feeding is, and should be, pleasurable for living beings so they desire to nourish themselves while preserving the continuity of the species. Social rites usually revolve around the table and are closely linked to the cultural traditions of each region and social group. Since the beginning, food has been closely linked with the products each region provides, and, also, related to the respective seasons of production. With the globalization and facilities of modern life we are able to find an ever increasing variety of products at any time of the year on supermarket shelves. These lifestyle changes end up directly influencing food traditions. With the era of uncontrolled obesity caused by the dazzle with the large and varied supply of low-priced to ultra-processed industrial products now in the past, today we are living a time when people are putting aside the pleasure of eating to exclusively eat food dictated by the media as healthy. Recently the medicalization of food in our society has become so present in daily life that almost without realizing we make food choices conditioned to the studies of the properties of these foods. The fact that people are more attentive to their health is interesting. However, when this care becomes an obsessive disorder, which imposes itself on the pleasure of eating and extinguishes traditional customs, it becomes dangerous for our recognition as citizens belonging to a culture and society. This new way of living generates a rupture with the social environment of origin, possibly exposing old traditions to oblivion after two or three generations. Based on these facts, the presented study analyzes these social transformations that occur in our society that triggered the current medicalization of food. In order to clarify what is actually a healthy diet, this research proposes a critical analysis on the subject aiming to understand nutritional rationality and relate how it acts in the medicalization of food. A wide bibliographic review on the subject was carried out followed by an exploratory research in online (especially social) media, a relevant source in this context due to the perceived influence of such media in contemporary eating habits. Finally, this data was crossed, critically analyzing the current situation of the concept of healthy eating and medicalization of food. Throughout this research, it was noticed that people are increasingly seeking information about the nutritional properties of food, but instead of seeking the benefits of products that traditionally eat in their social environment, they incorporate external elements that often bring benefits similar to the food already consumed. This is because the access to information is directed by the media and exalts the exotic, since this arouses more interest of the population in general. Efforts must be made to clarify that traditional products are also healthy foods, rich in history, memory and tradition and cannot be replaced by a standardized diet little concerned with the construction of taste and pleasure, having a relationship with food as if it were a Medicinal product.

Keywords: food traditions, food transformations, healthy eating, medicalization of food

Procedia PDF Downloads 329
13894 Video-Based Psychoeducation for Caregivers of Persons with Schizophrenia

Authors: Jilu David

Abstract:

Background: Schizophrenia is one of the most misunderstood mental illnesses across the globe. Lack of understanding about mental illnesses often delay treatment, severely affects the functionality of the person, and causes distress to the family. The study, Video-based Psychoeducation for Caregivers of Persons with Schizophrenia, consisted of developing a psychoeducational video about Schizophrenia, its symptoms, causes, treatment, and the importance of family support. Methodology: A quasi-experimental pre-post design was used to understand the feasibility of the study. Qualitative analysis strengthened the feasibility outcomes. Knowledge About Schizophrenia Interview was used to assess the level of knowledge of 10 participants, before and after the screening of the video. Results: Themes of usefulness, length, content, educational component, format of the intervention, and language emerged in the qualitative analysis. There was a statistically significant difference in the knowledge level of participants before and after the video screening. Conclusion: The statistical and qualitative analysis revealed that the video-based psychoeducation program was feasible and that it facilitated a general improvement in knowledge of the participants.

Keywords: Schizophrenia, mental illness, psychoeducation, video-based psychoeducation, family support

Procedia PDF Downloads 131
13893 The Next Generation Neutrinoless Double-Beta Decay Experiment nEXO

Authors: Ryan Maclellan

Abstract:

The nEXO Collaboration is designing a very large detector for neutrinoless double beta decay of Xe-136. The nEXO detector is rooted in the current EXO-200 program, which has reached a sensitivity for the half-life of the decay of 1.9x10^25 years with an exposure of 99.8 kg-y. The baseline nEXO design assumes 5 tonnes of liquid xenon, enriched in the mass 136 isotope, within a time projection chamber. The detector is being designed to reach a half-life sensitivity of > 5x10^27 years covering the inverted neutrino mass hierarchy, with 5 years of data. We present the nEXO detector design, the current status of R&D efforts, and the physics case for the experiment.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 423
13892 Consumer Market of Agricultural Products and Agricultural Policy in Georgia

Authors: G. Erkomaishvili, M. Kobalava, T. Lazariashvili, M. Saghareishvili

Abstract:

The article discusses the consumer market of agricultural products and agricultural policy in Georgia. It is noted that development of the strategic areas of the agricultural sector needs a special support. These strategic areas should create the country's major export potential. It is important to develop strategies to access to the international markets, form extensive marketing network etc., which will become the basis for the promotion and revenue growth of the country. The Georgian agricultural sector, with the right state policy and support, can achieve success and gain access to the world market with competitive agricultural products. The paper discusses the current condition of agriculture, export and import of agricultural products and agricultural policy in Georgia. The conducted research concludes the information that there is an increasing demand on the green goods in the world market. Natural and climatic conditions of Georgia give a serious possibility of implementing it. The research presents an agricultural development strategy in Georgia and the findings and based on them recommendations are proposed.

Keywords: agriculture, export-import of agricultural products, agricultural cooperative society, agricultural policy, agricultural insurance

Procedia PDF Downloads 322
13891 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos

Authors: Hatthaphone Silimanotham, Michael Henry

Abstract:

The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.

Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling

Procedia PDF Downloads 159
13890 Exploring the Role of Extracurricular Activities (ECAs) in Fostering University Students’ Soft Skills

Authors: Hanae Ait Hattani, Nohaila Ait Hattani

Abstract:

Globalization, with the rapid technological progress, is affecting every life aspect. The 21st century higher education faces a major challenge in preparing well-rounded and competent graduates to compete in the global marketplace. Worldwide, educational policies work to develop the quality of instruction at all educational levels by focusing on promoting students’ qualifications and skills, considering both academic activities and non-academic attributes. In fact, extracurricular activities (ECAs) complement the academic curriculum and enhance the student experience by improving their interpersonal skills and attitudes. This study comes to examine the potential of extracurricular activities as a vital tool for soft skills’ development. Using empirical research, the study aims to measure and evaluate the extent to which university students’ engagement in extracurricular activities contribute in positively changing their learning experience, fostering their soft skills and fostering their behaviors and attitudes. Findings emanating from a questionnaire and semi-structured interviews add a number of contributions to the literature. They support the assumption suggesting that ECAs can be considered a valuable way to acquire, develop, and demonstrate softs skills that students today need to evidence in a variety of contexts, such as communication skills, team work, leadership, problem-solving, to name but a few.

Keywords: extracurricular activities (ECAs), soft skills, education, university, attitude

Procedia PDF Downloads 72
13889 Multi-Dimensional (Quantatative and Qualatative) Longitudinal Research Methods for Biomedical Research of Post-COVID-19 (“Long Covid”) Symptoms

Authors: Steven G. Sclan

Abstract:

Background: Since December 2019, the world has been afflicted by the spread of the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), which is responsible for the condition referred to as Covid-19. The illness has had a cataclysmic impact on the political, social, economic, and overall well-being of the population of the entire globe. While Covid-19 has had a substantial universal fatality impact, it may have an even greater effect on the socioeconomic, medical well-being, and healthcare planning for remaining societies. Significance: As these numbers illustrate, many more persons survive the infection than die from it, and many of those patients have noted ongoing, persistent symptoms after successfully enduring the acute phase of the illness. Recognition and understanding of these symptoms are crucial for developing and arranging efficacious models of care for all patients (whether or not having been hospitalized) surviving acute covid illness and plagued by post-acute symptoms. Furthermore, regarding Covid infection in children (< 18 y/o), although it may be that Covid “+” children are not major vectors of infective transmission, it now appears that many more children than initially thought are carrying the virus without accompanying obvious symptomatic expression. It seems reasonable to wonder whether viral effects occur in children – those children who are Covid “+” and now asymptomatic – and if, over time, they might also experience similar symptoms. An even more significant question is whether Covid “+” asymptomatic children might manifest increased multiple health problems as they grow – i.e., developmental complications (e.g., physical/medical, metabolic, neurobehavioral, etc.) – in comparison to children who had been consistently Covid “ - ” during the pandemic. Topics Addressed and Theoretical Importance: This review is important because of the description of both quantitative and qualitative methods for clinical and biomedical research. Topics reviewed will consider the importance of well-designed, comprehensive (i.e., quantitative and qualitative methods) longitudinal studies of Post Covid-19 symptoms in both adults and children. Also reviewed will be general characteristics of longitudinal studies and a presentation of a model for a proposed study. Also discussed will be the benefit of longitudinal studies for the development of efficacious interventions and for the establishment of cogent, practical, and efficacious community healthcare service planning for post-acute covid patients. Conclusion: Results of multi-dimensional, longitudinal studies will have important theoretical implications. These studies will help to improve our understanding of the pathophysiology of long COVID and will aid in the identification of potential targets for treatment. Such studies can also provide valuable insights into the long-term impact of COVID-19 on public health and socioeconomics.

Keywords: COVID-19, post-COVID-19, long COVID, longitudinal research, quantitative research, qualitative research

Procedia PDF Downloads 59
13888 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 621
13887 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
13886 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
13885 By-Line Analysis of Determinants Insurance Premiums : Evidence from Tunisian Market

Authors: Nadia Sghaier

Abstract:

In this paper, we aim to identify the determinants of the life and non-life insurance premiums of different lines for the case of the Tunisian insurance market over a recent period from 1997 to 2019. The empirical analysis is conducted using the linear cointegration techniques in the panel data framework, which allow both long and short-run relationships. The obtained results show evidence of long-run relationship between premiums, losses, and financial variables (stock market indices and interest rate). Furthermore, we find that the short-run effect of explanatory variables differs across lines. This finding has important implications for insurance tarification and regulation.

Keywords: insurance premiums, lines, Tunisian insurance market, cointegration approach in panel data

Procedia PDF Downloads 198
13884 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator

Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty

Abstract:

Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.

Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state

Procedia PDF Downloads 266
13883 Family Planning and HIV Integration: A One-stop Shop Model at Spilhaus Clinic, Harare Zimbabwe

Authors: Mercy Marimirofa, Farai Machinga, Alfred Zvoushe, Tsitsidzaishe Musvosvi

Abstract:

The Government of Zimbabwe embarked on integrating family planning with Sexually Transmitted Infection (STI) and Human Immunodeficiency Virus (HIV) services in May 2020 with support from the World Health Organization (WHO). There was high HIV prevalence, incidence rates and STI infections among women attending FP clinics. Spilhaus is a specialized center of excellence clinic which offers a range of sexual reproductive health services. HIV services were limited to testing only, and clients were referred to other facilities for further management. Integration of services requires that all the services be available at one point so that clients will access them during their visit to the facility. Objectives: The study was conducted to assess the impact the one-stop-shop model has made in accessing integrated Family Planning services and sexual reproductive health services compared to the supermarket approach. It also assessed the relationship family planning services have with other sexual reproductive health services. Methods: A secondary data analysis was conducted at Spilhaus clinic in Harare using family planning registers and HIV services registers comparing years 2019 and 2021. A 2 sample t-test was used to determine the difference in clients accessing the services under the two models. A Spearman’s rank correlation was used to determine if accessing family planning services has a relationship with other sexual reproductive health services. Results: In 2019, 7,548 clients visited the Spilhaus clinic compared to 8,265 during the period January to December 2021. The median age for all clients accessing services was 32 years. An increase of 69% in the number of services accessed was recorded from 2019 to 2021. More services were accessed in 2021. There was no difference in the number of clients accessing family planning services cervical cancer, and HIV services. A difference was found in the number of clients who were offered STI screening services. There was also a relationship between accessing family planning services and STI screening services (ρ = 0.729, p-value=0.006). Conclusion: Programming towards SRH services was a great achievement, the use of an integrated approach proved to be cost-effective as it minimised the required resources for separate programs. Clients accessed important health needs at once. The integration of these services provided an opportunity to offer comprehensive information which addressed an individual’s sexual reproductive health needs.

Keywords: intergration, one stop shop, family planning, reproductive health

Procedia PDF Downloads 68
13882 Assessing Justice, Security and Human Rights Violations in Crisis Situations: The Case of Cameroon

Authors: Forbah Julius Ajamah

Abstract:

The protection of human rights and respect of the rule of law in Sub-Saharan African is a constant challenge due to ongoing and protracted conflict situations, political instability, shrinking democratic space and allegations of large-scale corruption in some countries. Conflict and/or crisis is most often resulting from constant violations of individual rights, with the risk increasing when many human rights are violated in a systematic or widespread fashion. Violations related to economic, social and cultural rights at times are as significant as violations of civil and political rights. Cameroon a country in Sub-Saharan African, for many years now has been confronted by numerous crises across different regions. Despite measures carried out, it has been reported that lesser and lesser attention has been placed on various conflict/crisis across Cameroon. To reach a common understanding of how both the economic, social and cultural rights has been violated and related impact on the quality of life, this paper evaluates justice, security and human rights violations in the present crisis situations. Without the prevention of human rights violations, wider conflict and/or crisis, will continue to have a negative impact in the lives of the inhabitants. This paper aims at providing evidence to support the fact that effective prevention requires early identification of risks that could allow for preventive and/or mitigatory measures to be designed and implemented.

Keywords: justice, security, human rights abuses, conflicts, crisis

Procedia PDF Downloads 86
13881 The Current Status of Integrating Information and Communication Technology in Teaching at Sultan Qaboos University

Authors: Ahmed Abdelrahman, Ahmed Abdelraheem

Abstract:

There are many essential factors affecting the integration of information and communication technology (ICT) into teaching and learning, including technology infrastructure, institutional support, professional development, and faculty members’ beliefs regarding ICT integration. The present research project investigated the current status of integrating ICT into teaching and learning at Sultan Qaboos University (SQU). A sample of 220 faculty members from six different colleges and four administrators from the Center of Educational Technology (CET) and the Center for Information Systems (CIS) at SQU in Oman were chosen, and quantitative, qualitative design using a semi-structured questionnaire, interviews and checklists were employed. The findings show that SQU had a high availability of ICT infrastructure in terms of hardware, software, and support services, as well as adequate computer labs for educational purposes. However, the results also indicated that, although SQU provided a series of professional development workshops related to using ICT in teaching, few faculty members were interested. Furthermore, the finding indicated that the degree of ICT integration into teaching at SQU was at a medium level.

Keywords: information and communication technology, integration, professional development, teaching

Procedia PDF Downloads 165
13880 Resilience and Mindfulness as Individual Resources Building Communication Skills for Physicians

Authors: Malgorzata Sekulowicz, Krystyna Boron-Krupinska, Paulina Morga, Blazej Cieslik

Abstract:

Burnout is highly prevalent in health care employees, especially in physicians. It significantly reduces the efficiency of these employees, which can have negative consequences for both physicians and patients. Resilience and mindfulness enhancing positive emotions, leading to sustainable development and personal commitment, can have a significant impact on burnout. Therefore, the aim of this study was to determine the relationship between burnout symptoms and mindfulness and resilience among physicians. The authors conducted a cross-sectional survey study among seventy-four polish physicians. Participants filled out the following psychometric tools: the Maslach Burnout Inventory - Human Services Survey (MBI-HSS), Five Facet Mindfulness Questionnaire (FFMQ), Areas of Work-Life Survey (AWS), International Personality Item Pool (IPIP), the Resilience Assessment Scale (SPP-25) and the Mini-COPE Inventory. The relationship between burnout and resilience and mindfulness was assessed with path analysis. Analyzing the relationship between MBI-HSS components and mindfulness, a significant negative correlation of the FFMQ score with emotional exhaustion (-0.50, p < 0.05) and depersonalization (-0.43, p < 0.05) and a positive correlation with personal accomplishment (0.50, p < 0.05) was demonstrated. Analyzing resilience, a statistically significant relationship of SPP-25 with all tested components of MBI-HSS was demonstrated: emotional exhaustion (-0.54, p < 0.05), depersonalization (-0.31, p < 0.05) and personal accomplishment (0.35, p < 0.05). In the group of medical doctors, the higher the level of mindfulness and resilience, the lower the risk of burnout. Furthermore, the more frequently used active coping strategies (planning, acceptance), the lower the risk of burnout, while the use of passive, evasive strategies increases the risk of burnout. It may be worth considering implementing mindfulness intervention to effectively manage burnout symptoms in this group.

Keywords: burnout, medical doctors, mindfulness, physicians, resilience

Procedia PDF Downloads 105
13879 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain

Procedia PDF Downloads 458