Search results for: structure and weight ratio
10162 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis
Authors: Komeil Valipourian
Abstract:
Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)
Procedia PDF Downloads 12710161 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production
Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra
Abstract:
The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.Keywords: choak, rice beer waste, laying hen, production performance, cost economics
Procedia PDF Downloads 5910160 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam
Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra
Abstract:
Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity
Procedia PDF Downloads 30410159 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 17410158 Regional Competitiveness and Innovation in the Tourism Sector: A Systematic Review and Bibliometric Analysis
Authors: Sérgio J. Teixeira, João J. Ferreira
Abstract:
Tourism frequently gets identified as one of the sectors with the greatest potential for expansion on a global scale and hence conveying the importance of attempting to better understand the regional factors of competitiveness prevailing in this sector. This study’s objective essentially strives to provide a mapping of the scientific publications and the intellectual knowledge therein contained while conveying past research trends and identifying potential future lines of research in the fields of regional competitiveness and tourism innovation. This correspondingly deploys a systematic review of the literature in keeping with the bibliometric approach based upon VOSviewer software, with a particular focus on drafting maps for visualising the underlying intellectual structure. This type of analysis encapsulates the number of articles published and their annual number of citations for the period between 1900 and 2016 as registered by the Web of Science database. The results demonstrate how the intellectual structure on regional competitiveness divides essentially into three major categories: regional competitiveness, tourism innovation, and tourism clusters. Thus, the main contribution of this study arises out of identifying the main research trends in this field and the respective shortcomings and specific needs for future scientific research in the field of regional competitiveness and innovation in tourism.Keywords: regional competitiveness, tourism cluster, bibliometric studies, tourism innovation, systematic review
Procedia PDF Downloads 23410157 Effect of Postweld Soaking Temperature on Mechanical Properties of AISI 1018 Steel Plate Welded in Aqueous Environment
Authors: Yahaya Taiwo, Adedayo M. Segun
Abstract:
This study investigated the effect of postweld soaking temperature on mechanical properties of AISI 1018 steel plate welded in aqueous environment. Pairs of 90 x 70 x 12 mm, AISI 1018 steel plates were welded with weld zone beyond distance 10 mm from weld centerline immersed in a water jacket at 25°C. The welded specimens were tempered at temperature of 200, 300, 400, 500 and 600°C for 1.5 hours. Tensile, hardness and toughness tests at distances 15, 30, 45 and 60 mm from the weld centreline with micro structural evaluation were carried out. The results show that the aqueous environment as-weld sample exhibited higher hardness and tensile strength values of 45.3 HV and 448.12 N/mm2 respectively while the hardness and tensile strength of aqueous environment postweld heat treated samples were 44.9 HV and 378.98 N/mm2. This revealed 0.82% and 15.4% reduction in hardness and strength respectively. The metallographic tests showed that the postweld heat treated AISI 1018 steel micro structure contained tempered martensite with ferritic structure and precipitation of carbides. Postweld heat treatment produced materials of lower hardness and improved toughness.Keywords: air weld samples, aqueous environment weld samples, soaking temperature, water jacket
Procedia PDF Downloads 33410156 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 12610155 Experimental Investigation of Interfacial Bond Strength of Concrete Layers
Authors: Rajkamal Kumar, Sudhir Mishra
Abstract:
The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test
Procedia PDF Downloads 33310154 The Malfatti’s Problem in Reuleaux Triangle
Authors: Ching-Shoei Chiang
Abstract:
The Malfatti’s Problem is to ask for fitting 3 circles into a right triangle such that they are tangent to each other, and each circle is also tangent to a pair of the triangle’s side. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles, we call it extended general Malfatti’s problem, these circles whose tangency graph, using the center of circles as vertices and the edge connect two circles center if these two circles tangent to each other, has the structure as Pascal’s triangle, and the exterior circles of these circles tangent to three sides of the triangle. In the extended general Malfatti’s problem, there are closed-form solutions for n=1, 2, and the problem becomes complex when n is greater than 2. In solving extended general Malfatti’s problem (n>2), we initially give values to the radii of all circles. From the tangency graph and current radii, we can compute angle value between two vectors. These vectors are from the center of the circle to the tangency points with surrounding elements, and these surrounding elements can be the boundary of the triangle or other circles. For each circle C, there are vectors from its center c to its tangency point with its neighbors (count clockwise) pi, i=0, 1,2,..,n. We add all angles between cpi to cp(i+1) mod (n+1), i=0,1,..,n, call it sumangle(C) for circle C. Using sumangle(C), we can reduce/enlarge the radii for all circles in next iteration, until sumangle(C) is equal to 2πfor all circles. With a similar idea, this paper proposed an algorithm to find the radii of circles whose tangency has the structure of Pascal’s triangle, and the exterior circles of these circles are tangent to the unit Realeaux Triangle.Keywords: Malfatti’s problem, geometric constraint solver, computer-aided geometric design, circle packing, data visualization
Procedia PDF Downloads 13210153 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process
Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani
Abstract:
Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process
Procedia PDF Downloads 33810152 New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures
Authors: Huan Li, Jianchun Li, Yancheng Li, Yang Yu
Abstract:
As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device.Keywords: negative stiffness, adaptive stiffness, weakening and yielding, constant force-displacement characteristic
Procedia PDF Downloads 16010151 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: polypyrrole, dielectric constant, dielectric loss, AC conductivity
Procedia PDF Downloads 29510150 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl
Abstract:
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.Keywords: dynamic behavior, lightweight, machine tool, pose-dependency
Procedia PDF Downloads 45910149 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study
Authors: Dinesh Kumar Maurya, Sapan Mohan Saini
Abstract:
A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound
Procedia PDF Downloads 34910148 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading
Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing
Abstract:
The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure
Procedia PDF Downloads 12210147 The Imagined Scientific Drawing as a Representative of the Content Provided by Emotions to Scientific Rationality
Authors: Dení Stincer Gómez, Zuraya Monroy Nasr
Abstract:
From the epistemology of emotions, one of the topics of current reflection is the function that emotions fulfill in the rational processes involved in scientific activity. So far, three functions have been assigned to them: selective, heuristic, and carriers of content. In this last function, it is argued that emotions, like our perceptual organs, contribute relevant content to reasoning, which is then converted into linguistic statements or graphic representations. In this paper, of a qualitative and philosophical nature, arguments are provided for two hypotheses 1) if emotions provide content to the mind, which then translates it into language or representations, then it is important to take up the idea of the Saussurean linguistic sign to understand this process. This sign has two elements: the signified and the signifier. Emotions would provide meanings, and reasoning creates the signifier, and 2) the meanings provided by emotions are properties and qualities of phenomena generally not accessible to the sense organs. These meanings must be imagined, and the imagination is nurtured by the feeling that "maybe this is the way." One way to access the content provided by emotions can be through imagined scientific drawings. The atomic models created since Thomson, the structure of crystals by René Just, the representations of lunar eclipses by Johannes, fractal geometry, and the structure of DNA, among others, have resulted fundamentally from the imagination. These representations, not provided by the sense organs, seem to come from the emotional involvement of scientists in their desire to understand, explain and discover.Keywords: emotions, epistemic functions of emotions, scientific drawing, linguistic sign
Procedia PDF Downloads 7110146 A Low-Cost Dye Solar Cells Based on Ordinary Glass as Substrates
Authors: Sangmo Jon, Ganghyok Kim, Kwanghyok Jong, Ilnam Jo, Hyangsun Kim, Kukhyon Pae, GyeChol Sin
Abstract:
The back contact dye solar cells (BCDSCs), in which the transparent conductive oxide (TCO) is omitted, have the potential to use intact low-cost general substrates such as glass, metal foil, and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect with one another. A porous Ti film, which consists of Ti particles of ≤10㎛ size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 ohm sq⁻¹ for an efficient electron collection for DSCs. This Ti back contact electrode can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated all TCO-less DSCs. These four-layer structured DSCs consist of a dye-adsorbed nanocrystalline TiO₂ film on a glass substrate, a porous Ti back contact layer, a ZrO₂ spacer layer, and a carbon counter electrode in a layered structure. Under AM 1.5G and 100mWcm⁻² simulated sunlight illumination, the four-layer structured DSCs with N719 dyes and I⁻/I₃⁻ redox electrolytes achieved PCEs up to 5.21%.Keywords: dye solar cells, TCO-less, back contact, printing, porous Ti film
Procedia PDF Downloads 6610145 Ant and Spider Diversity in a Rural Landscape of the Vhembe Biosphere, South Africa
Authors: Evans V. Mauda, Stefan H. Foord, Thinandavha C. Munyai
Abstract:
The greatest threat to biodiversity is a loss of habitat through landscape fragmentation and attrition. Land use changes are therefore among the most immediate drivers of species diversity. Urbanization and agriculture are the main drivers of habitat loss and transformation in the Savanna biomes of South Africa. Agricultural expansion and the intensification in particular, take place at the expense of biodiversity and will probably be the primary driver of biodiversity loss in this century. Arthropods show measurable behavioural responses to changing land mosaics at the smallest scale and heterogeneous environments are therefore predicted to support more complex and diverse biological assemblages. Ants are premier soil turners, channelers of energy and dominate insect fauna, while spiders are a mega-diverse group that can regulate other invertebrate populations. This study aims to quantify the response of these two taxa in a rural-urban mosaic of a rapidly developing communal area. The study took place in and around two villages in the north-eastern corner of South Africa. Two replicates for each of the dominant land use categories, viz. urban settlements, dryland cultivation and cattle rangelands, were set out in each of the villages and sampled during the dry and wet seasons for a total of 2 villages × 3 land use categories × 2 seasons = 24 assemblages. Local scale variables measured included vertical and horizontal habitat structure as well as structural and chemical composition of the soil. Ant richness was not affected by land use but local scale variables such as vertical vegetation structure (+) and leaf litter cover (+), although vegetation complexity at lower levels was negatively associated with ant richness. However, ant richness was largely shaped by regional and temporal processes invoking the importance of dispersal and historical processes. Spider species richness was mostly affected by land use and local conditions highlighting their landscape elements. Spider richness did not vary much between villages and across seasons and seems to be less dependent on context or history. There was a considerable amount of variation in spider richness that was not explained and this could be related to factors which were not measured in this study such as temperature and competition. For both ant and spider assemblages the constrained ordination explained 18 % of variation in these taxa. Three environmental variables (leaf litter cover, active carbon and rock cover) were important in explaining ant assemblage structure, while two (sand and leaf litter cover) were important for spider assemblage structure. This study highlights the importance of disturbance (land use activities) and leaf litter with the associated effects on ant and spider assemblages across the study area.Keywords: ants, assemblages, biosphere, diversity, land use, spiders, urbanization
Procedia PDF Downloads 26710144 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid
Procedia PDF Downloads 18410143 Ambient Vibration Test and Numerical Modelling of Wind Turbine Towers including Soil Structure Interaction
Authors: Heba Kamal, Ghada Saudi
Abstract:
Due to The rapid expansion of energy and growing number of wind turbines construction in earthquake areas, a design method for simple and accurate evaluation of seismic load to ensure structural integrity is required. In Egypt, there are some appropriate places to build wind turbine towers lie in active seismically regions, so accurate analysis is necessary for prediction of seismic loads with consideration of intensity of the earthquake, soil and structural characteristics. In this research, seismic behavior of wind turbine towers Gamesa Type G52 in Zafarana Wind Farm Egypt is investigated using experimental work by ambient vibration test, and fully dynamic analysis based on time history from El Aqaba Earthquake 1995 using 3D by PLAXIS 3D software, including the soil structure interaction effect. The results obtained from dynamic analyses are discussed. From this study, it is concluded that, the fully dynamic seismic analysis based on used PLAXIS 3D with the aid of the full scale ambient vibration test gives almost good simulation for the seismic loads that can be applied to wind turbine tower design in Egypt.Keywords: Wind turbine towers, Zafarana Wind Farm, Gamesa Type G52, ambient vibration test
Procedia PDF Downloads 20810142 Medium-Scale Multi-Juice Extractor for Food Processing
Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan
Abstract:
Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor
Procedia PDF Downloads 32410141 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 20110140 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method
Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović
Abstract:
The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR
Procedia PDF Downloads 36410139 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve
Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza
Abstract:
Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.Keywords: butterfly valves, fluid-structure interaction, one-way approach, two-way approach
Procedia PDF Downloads 16210138 Collective Behavior of Mice Passing through a Middle-Exit or Corner-Exit under Panic
Authors: Teng Zhang, Xuelin Zhang, Shouxiang Lu, Changhai Li
Abstract:
The existence of animal groups and collective migration are common in nature, and collective behavior is attracting more and more attention of researchers. Previous results have shown that architectural design had an important effect on the process of crowd evacuation. In this paper, collective behavior of mice passing through a middle-exit or corner-exit under panic was investigated. Selfish behavior and herd behavior were easily observed in our video, which caused the congregation with high density near the exit. Triangle structure of congregation formed near the middle-exit while arch structure formed near the corner-exit. It is noteworthy that the exit located at the middle of the wall was more effective for evacuation than at the corner. Meanwhile, the escape sequence of mouse passing through the exit was investigated, and the result showed that the priority depends largely on its location in the congregation. With the level of stimulus increasing, these phenomena still exist. The frequency distributions of time intervals and the burst sizes were also analyzed in this study to explore the secret of collective behavior of mice. These results could provide evidence for the hypothesis or prediction about human behavior in crowd evacuation. However, it is not clear whether the simulated results from different species can correspond to reality or not. Broader comparison among different species about this topic will be eager to be conducted to deepen our understanding of collective behavior in nature.Keywords: collective behavior, mice, evacuation, exit location
Procedia PDF Downloads 30210137 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 16110136 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 38910135 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations
Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo
Abstract:
Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.Keywords: propulsion, flapping foils, hydrodynamics, wave power
Procedia PDF Downloads 6110134 MAOD Is Estimated by Sum of Contributions
Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren
Abstract:
Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill
Procedia PDF Downloads 13610133 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment
Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang
Abstract:
Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique
Procedia PDF Downloads 397