Search results for: magnetic lines of force as waves
703 Deregulation of Thorium for Room Temperature Superconductivity
Authors: Dong Zhao
Abstract:
Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity.Keywords: co-existence of high electrical conductivity and diamagnetism, electron pairing and electron lone pair, room temperature superconductivity, the special molecular configuration of thorium sulfide ThS
Procedia PDF Downloads 50702 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein
Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel
Abstract:
Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome
Procedia PDF Downloads 199701 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 59700 Lies and Pretended Fairness of Police Officers in Sharing
Authors: Eitan Elaad
Abstract:
The current study aimed to examine lying and pretended fairness by police personnel in sharing situations. Forty Israeli police officers and 40 laypeople from the community, all males, self-assessed their lie-telling ability, rated the frequency of their lies, evaluated the acceptability of lying, and indicated using rational and intuitive thinking while lying. Next, according to the ultimatum game procedure, participants were asked to share 100 points with an imagined target, either a male policeman or a male non-policeman. Participants allocated points to the target person bearing in mind that the other person must accept or reject their offer. Participants' goal was to retain as many points as possible, and to this end, they could tell the target person that fewer than 100 points were available for distribution. We defined concealment or lying as the difference between the available 100 points and the sum of points designated for sharing. Results indicated that police officers lied less to their fellow police targets than non-police targets, whereas laypeople lied less to non-police targets than imagined police targets. The ratio between the points offered to the imagined target person and the points endowed by the participant as available for sharing defined pretended fairness.Enhanced pretended fairness indicates higher motivation to display fair sharing even if the fair sharing is fictitious. Police officers presented higher pretended fairness to police targets than laypeople, whereas laypeople set off more fairness to non-police targets than police officers. We discussed the results concerning occupation solidarity and loyalty among police personnel. Specifically, police work involves uncertainty, danger and risk, coercive authority, and the use of force, which isolates the police from the community and dictates strong bonds of solidarity between police personnel. No wonder police officers shared more points (lied less) to fellow police targets than non-police targets. On the other hand, police legitimacy or the belief that the police are acting honestly in the best interest of the citizens constitutes citizens' attitudes toward the police. The relatively low number of points shared for distribution by laypeople to police targets indicates difficulties with the legitimacy of the Israeli police.Keywords: lying, fairness, police solidarity, police legitimacy, sharing, ultimatum game
Procedia PDF Downloads 114699 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 298698 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties
Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra
Abstract:
Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers
Procedia PDF Downloads 140697 Problems and Prospects of Agricultural Biotechnology in Nigeria’s Developing Economy
Authors: Samson Abayomi Olasoju, Olufemi Adekunle, Titilope Edun, Johnson Owoseni
Abstract:
Science offers opportunities for revolutionizing human activities, enriched by input from scientific research and technology. Biotechnology is a major force for development in developing countries such as Nigeria. It is found to contribute to solving human problems like water and food insecurity that impede national development and threaten peace wherever it is applied. This review identified the problems of agricultural biotechnology in Nigeria. On the part of rural farmers, there is a lack of adequate knowledge or awareness of biotechnology despite the fact that they constitute the bulk of Nigerian farmers. On part of the government, the problems include: lack of adequate implementation of government policy on bio-safety and genetically modified products, inadequate funding of education as well as research and development of products related to biotechnology. Other problems include: inadequate infrastructures (including laboratory), poor funding and lack of national strategies needed for development and running of agricultural biotechnology. In spite of all the challenges associated with agricultural biotechnology, its prospects still remain great if Nigeria is to meet with the food needs of the country’s ever increasing population. The introduction of genetically engineered products will lead to the high productivity needed for commercialization and food security. Insect, virus and other related diseases resistant crops and livestock are another viable area of contribution of biotechnology to agricultural production. In conclusion, agricultural biotechnology will not only ensure food security, but, in addition, will ensure that the local farmers utilize appropriate technology needed for large production, leading to the prosperity of the farmers and national economic growth, provided government plays its role of adequate funding and good policy implementation.Keywords: biosafety, biotechnology, food security, genetic engineering, genetic modification
Procedia PDF Downloads 174696 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients
Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff
Abstract:
Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)
Procedia PDF Downloads 357695 Numerical Simulation of a Single Cell Passing through a Narrow Slit
Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu
Abstract:
Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration
Procedia PDF Downloads 334694 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 52693 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot
Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping
Abstract:
The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins
Procedia PDF Downloads 284692 CO₂ Conversion by Low-Temperature Fischer-Tropsch
Authors: Pauline Bredy, Yves Schuurman, David Farrusseng
Abstract:
To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process
Procedia PDF Downloads 58691 Frankie Adams’s Sexuality in the Member of the Wedding: Focusing on Musical References
Authors: Saori Iwatsuka
Abstract:
In The Member of the Wedding, Carson McCullers starts with the words, “It happened,” without telling the reader what happens to a twelve-year-old protagonist, Frankie Adams. The reader feels confused and incomprehensible. However, he or she later realizes that the confusing phrase is connected to the scene where Frankie feels “the thing happened” after listening to the melodic lines of jazz and blues. Yet, the reader cannot really comprehend what happens to Frankie and feels puzzled till the end. And the story ends with Frankie’s words, “I am simply mad about . . .” Implying her queer desire for her new friend Mary Littlejohn, McCullers never tells the reader whom Frankie is mad about. Despite McCullers’s ambiguous way of depicting Frankie’s sexuality, recent critics and reviewers have come to discuss her sexuality as anti-heterosexual because Frankie expresses her hatred for Barney, whom she has had some type of sexual encounter, and feels wrong with her brother Jarvis’s wedding. After giving up her sexual desire for Jarvis’s bride, Janice, Frankie changes her name to Frances, becomes engrossed with Michelangelo, and enjoys reading Tennyson’s poetry with Mary. Michelangelo and Tennyson are well-known homosexual artists, which suggests that Frankie has an anti-heterosexual orientation. As McCullers does not precisely describe Frankie’s sexuality, the reader can only assume it by connecting fragmentary descriptions. However, this discussion is more clarified to show Frankie’s sexuality because analyzing the musical references of jazz and blues and interpreting them from a musicological viewpoint will illuminate it. In her works, McCullers frequently uses musical references and descriptions, which have a significant and psychological impact on the protagonists and portrays their bodily reactions to the impact to reveal what the reader cannot see on the surface. Thus, in this story, too, Frankie’s bodily reaction to music is portrayed to cue her feelings. After seeing the chimney swifts, known as monogamous birds, Frankie feels “a jazz sadness,” quivers her nerves and stiffens her heart. After listening to Berenice’s “dark jazz voice,” Frankie feels dizzy and throws a knife because Berenice’s voice jazzes (excites) her heart that beats in her head. Calming herself, she fantasizes that Jarvis, Jarvis’s bride, Janice, and herself are members of “the we of me.” Then in the evening, listening to the blues and jazz being played by a black horn player somewhere in her neighborhood, Frankie realizes “the thing happened” and discovers “a new feeling.” Following the musical references “jazz” and “blues” and examining them from the viewpoint of musicology and terminology leads the reader to explore what “it” is in “it happened” and what her “new feeling” is when “the thing happened” with the blues tune breaking off. Those discussions will illuminate Frankie’s sexuality. As McCullers does not clearly name her sexuality, this paper uses the word queer to express Frankie’s anti-sexual orientation.Keywords: jazz and blues, musical references, queer sexuality, “we of me”
Procedia PDF Downloads 89690 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 249689 Lessons Learned from Implementation of Remote Pregnant and Newborn Care Service for Vulnerable Women and Children During COVID-19 and Political Crisis in Myanmar
Authors: Wint Wint Thu, Htet Ko Ko Win, Myat Mon San, Zaw Lin Tun, Nandar Than Aye, Khin Nyein Myat, Hayman Nyo Oo, Nay Aung Lin, Kusum Thapa, Kyaw Htet Aung
Abstract:
Background: In Myanmar, the intense political instability happened to start in Feb-2021, while the COVID-19 pandemic waves are also threatening the public health system, which subsequently led to severe health sector crisis, including difficulties in accessing maternal and newborn health care for vulnerable women and children. The Remote Pregnant and Newborn Care (RPNC) uses a telehealth approach United States Agency for International Development (USAID)-funded Essential Health Project. Implementation: The Remote Pregnant and Newborn Care (RPNC) service has adapted to the MNCH needs of vulnerable pregnant women and was implemented to mitigate the risk of limited access to essential quality MNH care in Yangon, Myanmar, under women, and the project trained 13 service providers on a telehealth care package for pregnancy and newborn developed Jhpiego to ensure understanding of evidence-based MNCH care practices. The phone numbers of the pregnant women were gathered through the preexisting and functioning community volunteers, who reach the most vulnerable pregnant women in the project's targeted area. A total of 212 pregnant women have been reached by service providers for RPNC during the implementation period. The trained service providers offer quality antenatal and postnatal care, including newborn care, via telephone calls. It includes 24/7 incoming calls and time-allotted outgoing calls to the pregnant women during antenatal and postnatal periods, including the newborn care. The required data were collected daily in time with the calls, and the quality of the medical services is made assured with the track of the calls, ensuring data privacy and patient confidentiality. Lessons learned: The key lessons are 1) cost-effectiveness: RPNC service could reduce out of pocket expenditure of pregnant women as it only costs 1.6 United States dollars (USD) per one telehealth call while it costs 8 to 10 USD per one time in-person care service at private service providers, including transportation cost, 2) network of care: telehealth call could not replace the in-person antenatal and postnatal care services, and integration of telehealth calls with in-person care by local healthcare providers with the support of the community is crucial for accessibility to essential MNH services by poor and vulnerable women, and 3) sharing information on health access points: most of the women seem to have financial barriers in accessing private health facilities while public health system collapse and telehealthcare could provide information on low-cost facilities and connect women to relevant health facilities. These key lessons are important for future efforts regarding the implementation of remote pregnancy and newborn care in Myanmar, especially during the political crisis and COVID-19 pandemic situation.Keywords: telehealth, accessibility, maternal care, newborn care
Procedia PDF Downloads 101688 An Adjoint-Based Method to Compute Derivatives with Respect to Bed Boundary Positions in Resistivity Measurements
Authors: Mostafa Shahriari, Theophile Chaumont-Frelet, David Pardo
Abstract:
Resistivity measurements are used to characterize the Earth’s subsurface. They are categorized into two different groups: (a) those acquired on the Earth’s surface, for instance, controlled source electromagnetic (CSEM) and Magnetotellurics (MT), and (b) those recorded with borehole logging instruments such as Logging-While-Drilling (LWD) devices. LWD instruments are mostly used for geo-steering purposes, i.e., to adjust dip and azimuthal angles of a well trajectory to drill along a particular geological target. Modern LWD tools measure all nine components of the magnetic field corresponding to three orthogonal transmitter and receiver orientations. In order to map the Earth’s subsurface and perform geo-steering, we invert measurements using a gradient-based method that utilizes the derivatives of the recorded measurements with respect to the inversion variables. For resistivity measurements, these inversion variables are usually the constant resistivity value of each layer and the bed boundary positions. It is well-known how to compute derivatives with respect to the constant resistivity value of each layer using semi-analytic or numerical methods. However, similar formulas for computing the derivatives with respect to bed boundary positions are unavailable. The main contribution of this work is to provide an adjoint-based formulation for computing derivatives with respect to the bed boundary positions. The key idea to obtain the aforementioned adjoint state formulations for the derivatives is to separate the tangential and normal components of the field and treat them differently. This formulation allows us to compute the derivatives faster and more accurately than with traditional finite differences approximations. In the presentation, we shall first derive a formula for computing the derivatives with respect to the bed boundary positions for the potential equation. Then, we shall extend our formulation to 3D Maxwell’s equations. Finally, by considering a 1D domain and reducing the dimensionality of the problem, which is a common practice in the inversion of resistivity measurements, we shall derive a formulation to compute the derivatives of the measurements with respect to the bed boundary positions using a 1.5D variational formulation. Then, we shall illustrate the accuracy and convergence properties of our formulations by comparing numerical results with the analytical derivatives for the potential equation. For the 1.5D Maxwell’s system, we shall compare our numerical results based on the proposed adjoint-based formulation vs those obtained with a traditional finite difference approach. Numerical results shall show that our proposed adjoint-based technique produces enhanced accuracy solutions while its cost is negligible, as opposed to the finite difference approach that requires the solution of one additional problem per derivative.Keywords: inverse problem, bed boundary positions, electromagnetism, potential equation
Procedia PDF Downloads 178687 Concepts of Modern Design: A Study of Art and Architecture Synergies in Early 20ᵗʰ Century Europe
Authors: Stanley Russell
Abstract:
Until the end of the 19th century, European painting dealt almost exclusively with the realistic representation of objects and landscapes, as can be seen in the work of realist artists like Gustav Courbet. Architects of the day typically made reference to and recreated historical precedents in their designs. The curriculum of the first architecture school in Europe, The Ecole des Beaux Artes, based on the study of classical buildings, had a profound effect on the profession. Painting exhibited an increasing level of abstraction from the late 19th century, with impressionism, and the trend continued into the early 20th century when Cubism had an explosive effect sending shock waves through the art world that also extended into the realm of architectural design. Architect /painter Le Corbusier with “Purism” was one of the first to integrate abstract painting and building design theory in works that were equally shocking to the architecture world. The interrelationship of the arts, including architecture, was institutionalized in the Bauhaus curriculum that sought to find commonality between diverse art disciplines. Renowned painter and Bauhaus instructor Vassily Kandinsky was one of the first artists to make a semi-scientific analysis of the elements in “non-objective” painting while also drawing parallels between painting and architecture in his book Point and Line to plane. Russian constructivists made abstract compositions with simple geometric forms, and like the De Stijl group of the Netherlands, they also experimented with full-scale constructions and spatial explorations. Based on the study of historical accounts and original artworks, of Impressionism, Cubism, the Bauhaus, De Stijl, and Russian Constructivism, this paper begins with a thorough explanation of the art theory and several key works from these important art movements of the late 19th and early 20th century. Similarly, based on written histories and first-hand experience of built and drawn works, the author continues with an analysis of the theories and architectural works generated by the same groups, all of which actively pursued continuity between their art and architectural concepts. With images of specific works, the author shows how the trend toward abstraction and geometric purity in painting coincided with a similar trend in architecture that favored simple unornamented geometries. Using examples like the Villa Savoye, The Schroeder House, the Dessau Bauhaus, and unbuilt designs by Russian architect Chernikov, the author gives detailed examples of how the intersection of trends in Art and Architecture led to a unique and fruitful period of creative synergy when the same concepts that were used by artists to generate paintings were also used by architects in the making of objects, space, and buildings. In Conclusion, this article examines the extremely pivotal period in art and architecture history from the late 19th to early 20th century when the confluence of art and architectural theory led to many painted, drawn, and built works that continue to inspire architects and artists to this day.Keywords: modern art, architecture, design methodologies, modern architecture
Procedia PDF Downloads 127686 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes
Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje
Abstract:
The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR
Procedia PDF Downloads 158685 Negative Environmental Impacts on Marine Seismic Survey Activities
Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora
Abstract:
Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation
Procedia PDF Downloads 186684 Nationalization of the Social Life in Argentina: Accumulation of Capital, State Intervention, Labor Market, and System of Rights in the Last Decades
Authors: Mauro Cristeche
Abstract:
This work begins with a very simple question: How does the State spend? Argentina is witnessing a process of growing nationalization of social life, so it is necessary to find out the explanations of the phenomenon on the specific dynamic of the capitalist mode of production in Argentina and its transformations in the last decades. Then the new question is: what happened in Argentina that could explain this phenomenon? Since the seventies, the capital growth in Argentina faces deep competitive problems. Until that moment the agrarian wealth had worked as a compensation mechanism, but it began to find its limits. In the meantime, some important demographical and structural changes had happened. The strategy of the capitalist class had to become to seek in the cheapness of the labor force the main source of compensation of its weakness. As a result, a tendency to worsen the living conditions and fragmentation of the working class started to develop, manifested by unemployment, underemployment, and the fall of the purchasing power of the salary as a highlighted fact. As a consequence, it is suggested that the role of the State became stronger and public expenditure increased, as a historical trend, because it has to intervene to face the contradictions and constant growth problems posed by the development of capitalism in Argentina. On the one hand, the State has to guarantee the process of buying the cheapened workforce and at the same time the process of reproduction of the working class. On the other hand, it has to help to reproduce the individual capitals but needs to ‘attack’ them in different ways. This is why the role of the State is said to be the general political representative to the national portion of the total social capital. What will be studied is the dynamic of the intervention of the Argentine State in the context of the particular national process of capital growth, and its dynamics in the last decades. What this paper wants to show are the main general causes that could explain the phenomenon of nationalization of the social life and how it has impacted the life conditions of the working class and the system of rights.Keywords: Argentina, nationalization, public policies, rights, state
Procedia PDF Downloads 136683 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic
Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak
Abstract:
Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂
Procedia PDF Downloads 193682 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins
Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava
Abstract:
The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles
Procedia PDF Downloads 155681 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients
Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari
Abstract:
The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation
Procedia PDF Downloads 84680 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study
Authors: Bikram K. Das, Kalyan K. Chattopadhyay
Abstract:
The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.Keywords: graphdiyne, graphyne, nitrogen-doped, ORR
Procedia PDF Downloads 128679 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors
Authors: P. Joshna, Souvik Kundu
Abstract:
Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.Keywords: chemical synthesis, oxides, photodetectors, spin coating
Procedia PDF Downloads 123678 Numerical Investigation of Fluid Outflow through a Retinal Hole after Scleral Buckling
Authors: T. Walczak, J. K. Grabski, P. Fritzkowski, M. Stopa
Abstract:
Objectives of the study are i) to perform numerical simulations that permit an analysis of the dynamics of subretinal fluid when an implant has induced scleral intussusception and ii) assess the impact of the physical parameters of the model on the flow rate. Computer simulations were created using finite element method (FEM) based on a model that takes into account the interaction of a viscous fluid (subretinal fluid) with a hyperelastic body (retina). The purpose of the calculation was to investigate the dependence of the flow rate of subretinal fluid through a hole in the retina on different factors such as viscosity of subretinal fluid, material parameters of the retina, and the offset of the implant from the retina’s hole. These simulations were performed for different speeds of eye movement that reflect the behavior of the eye when reading, REM, and saccadic movements. Similar to other works in the field of subretinal fluid flow, it was assumed stationary, single sided, forced fluid flow in the considered area simulating the subretinal space. Additionally, a hyperelastic material model of the retina and parameterized geometry of the considered model was adopted. The calculations also examined the influence the direction of the force of gravity due to the position of the patient’s head on the trend of outflow of fluid. The simulations revealed that fluid outflow from the retina becomes significant with eyeball movement speed of 100°/sec. This speed is greater than in the case of reading but is four times less than saccadic movement. The increase of viscosity of the fluid increased beneficial effect. Further, the simulation results suggest that moderate eye movement speed is optimal and that the conventional prescription of the avoidance of routine eye movement following retinal detachment surgery should be relaxed. Additionally, to verify numerical results, some calculations were repeated with use of meshless method (method of fundamental solutions), which is relatively fast and easy to implement. The paper has been supported by 02/21/DSPB/3477 grant.Keywords: CFD simulations, FEM analysis, meshless method, retinal detachment
Procedia PDF Downloads 343677 Transformation of the Relationship Between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture
Authors: Shuailing Cui, Nakajiam Naoto
Abstract:
The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.Keywords: tourism, residential environment, suburban area, metropolis
Procedia PDF Downloads 96676 Transformation of the Relationship between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture
Authors: Shuailing CUI, Nakajima Naoto
Abstract:
The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life, and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.Keywords: tourism, residential environment, suburban area, metropolis
Procedia PDF Downloads 70675 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation
Authors: A. K. Tekile, I. L. Kim, J. Y. Lee
Abstract:
Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.Keywords: stagnant, ultrasonic irradiation, water flow, water quality
Procedia PDF Downloads 193674 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control
Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin
Abstract:
The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics
Procedia PDF Downloads 75