Search results for: teacher learning
3268 Possible Reasons for and Consequences of Generalizing Subgroup-Based Measurement Results to Populations: Based on Research Studies Conducted by Elementary Teachers in South Korea
Authors: Jaejun Jong
Abstract:
Many teachers in South Korea conduct research to improve the quality of their instruction. Unfortunately, many researchers generalize the results of measurements based on one subgroup to other students or to the entire population, which can cause problems. This study aims to determine examples of possible problems resulting from generalizing measurements based on one subgroup to an entire population or another group. This study is needed, as teachers’ instruction and class quality significantly affect the overall quality of education, but the quality of research conducted by teachers can become questionable due to overgeneralization. Thus, finding potential problems of overgeneralization can improve the overall quality of education. The data in this study were gathered from 145 sixth-grade elementary school students in South Korea. The result showed that students in different classes could differ significantly in various ways; thus, generalizing the results of subgroups to an entire population can engender erroneous student predictions and evaluations, which can lead to inappropriate instruction plans. This result shows that finding the reasons for such overgeneralization can significantly improve the quality of education.Keywords: generalization, measurement, research methodology, teacher education
Procedia PDF Downloads 933267 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition
Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun
Abstract:
Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained
Procedia PDF Downloads 763266 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1363265 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 803264 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)
Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare
Abstract:
During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS
Procedia PDF Downloads 1643263 Using Smartphone Instant Messaging (IM) App for Academic Discussion in an Undergraduate Chemistry Course
Authors: Mei Xuan Tan, Eng Ying Bong
Abstract:
Academic discussion during and after instructional teaching is an integral part of learning. Such discussion between the instructor and student or peer-to-peer discussion can be in several different forms. It could be face-to-face discussion, via email and use of online discussion forum. In this study, the effectiveness of using WhatsApp for academic discussion for a first year half-credit Chemistry course was examined. This study was run over two years with two different batches of students. Participation in the study was voluntary and student volunteers were recruited within the first week of the term. The activity in the WhatsApp group was monitored by two instructors teaching the course. At the end of the course, the students participated in an online survey to evaluate their experience of using WhatsApp for academic discussion. There were a total of 26 questions. The survey had a total of 4 sections with regards to the use of WhatsApp for academic discussion: 1) Familiarity with WhatsApp, 2) Effectiveness of using WhatsApp for discussion, 3) Challenges and 4) Overall experience. The main purpose of using an IM platform for academic discussion was to encourage after-class discussion amongst the students. 32% of the participants had used other online platform, such as Piazza and forums in Learning Management System (LMS), for after-class academic discussion with their instructors and peers. This was a low percentage considering that some courses use such online platform as their main forum amongst instructors and students. At the end of our study, over 83% of the participants felt that WhatsApp was a more effective platform compared to other online forum. One interesting finding was the effect of WhatsApp discussion on face-to-face interaction with instructors. 28% of the students agreed that the use of WhatsApp as a discussion forum had encouraged them to approach their instructors during or after class. 51% of students answered neutral. This could be interpreted that the use of WhatsApp had not affected the frequent (or lack of) face-to-face interaction with their instructors. A second survey question, similar but phrased differently from the first, was also asked to evaluate the aspect of face-to-face interaction with instructors. 34% disagreed that the use of WhatsApp had reduced the frequency of face-to-face interaction. This could imply that the frequency remained the same or might have increased. The 38% who agreed to a decrease in face-to-face interaction have either asked the questions in WhatsApp or had their questions answered by a query from another student in the group chat. These outcomes suggested that the use of technology aided and complemented face-to-face interaction between instructors and students. The study also looked at the challenges of using WhatsApp for academic discussion. Some challenges included difficulty in referring back to previous discussion and students finding some discussions irrelevant to them. In conclusion, the use of IM platform for academic discussion was desirable for the students, but it should not be the only channel as face-to-face consultation and online forum for lengthy discussion are still important for after-class learning of students.Keywords: chemistry, pedogogy, technological tools, undergraduate
Procedia PDF Downloads 1363262 Improving the Quality of Higher Education for Students with Disability in Universities of Pakistan
Authors: Nasir Sulman
Abstract:
In Pakistan, the inclusion of persons with disabilities in higher education institutions has significantly been increased with every passing year and anyone can observe a sizeable number of these students in each faculty. The study executes to conduct a baseline survey for measuring faculty understanding about the special needs, experiences of students with disabilities and support provided by university administration in order to teach these students effectively. The researcher has used mixed methods and the University of Karachi was selected through non-probability-based sampling method. This university is one of the largest universities in Pakistan where more than 40,000 students have been enrolled. Data was gathered through a questionnaire and focused group discussion from three stakeholders including students with disabilities, faculty members and members of the university administration. The key findings show that students with disabilities experience a number of problems related to accommodating their special needs. However, the most encouraging factors identified are the attitude, support, and motivation they received from various faculty members and university administration. On the basis of the findings of the study the researcher has prepared a faculty guidebook and established a ‘Model Learning Assistance Centre for Students with Disabilities’ in the Department of Special Education, University of Karachi. Both these efforts will be helpful for improving the support services for students with disabilities to strengthen the existing laws, policies, and practices in institutions of higher education.Keywords: persons with disabilities, higher education, learning assistance center, faculty guidebook
Procedia PDF Downloads 1513261 Understanding Trauma Informed Pedagogy in On-Line Education during Turbulent Times: A Mixed Methods Study in a Canadian Social Work Context
Authors: Colleen McMillan, Alice Schmidt-Hanbidge, Beth Archer-Kuhn, Heather Boynton, Judith Hughes
Abstract:
It is well known that social work students enter the profession with higher scores of adverse childhood experiences (ACE). Add to that the fact that COVID-19 has forced higher education institutions to shift to online teaching and learning, where students, faculty and field educators in social work education have reported increased stressors as well as posing challenges in developing relationships with students and being able to identify mental health challenges including those related to trauma. This multi-institutional project included three Canadian post-secondary institutions at five sites (the University of Waterloo, the University of Calgary and the University of Manitoba) and partners; Desire To Learn (D2L), The Centre for Teaching Excellence at the University of Waterloo and the Taylor Institute for Teaching and Learning. A sequential mixed method research design was used. Survey data was collected from students, faculty and field education staff from the 3 universities using the Qualtrics Insight Platform, followed by virtual focus group data with students to provide greater clarity to the quantitative data. Survey data was analyzed using SPSS software, while focus group data was transcribed verbatim and organized with N-Vivo 12. Thematic analysis used line-by-line coding and constant comparative methods within and across focus groups. The following three objectives of the study were achieved: 1) Establish a Canadian baseline on trauma informed pedagogy and student experiences of trauma informed teaching in the online higher education environment during a pandemic; 2) Identify and document educator and student experiences of online learning regarding the ability to process trauma experiences; and, 3) Transfer the findings into a trauma informed pedagogical model for Social Work as a first step toward developing a universal trauma informed teaching model. The trauma informed pedagogy model would be presented in relation to the study findings.Keywords: trauma informed pedagogy, higher education, social work, mental health
Procedia PDF Downloads 903260 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course
Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo
Abstract:
This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance
Procedia PDF Downloads 1733259 talk2all: A Revolutionary Tool for International Medical Tourism
Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury
Abstract:
Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.Keywords: language translation, communication, machine learning, medical tourism
Procedia PDF Downloads 2143258 Arabic Literature as a Tool for Educational Transformation in Nigeria
Authors: Abdulfatah A Raji
Abstract:
This paper started with the definitions of literature, Arabic literature, transformation and went further to highlight the components of educational transformation. The general history of Arabic literature was discussed with focus on how it undergoes some transformations from pre-Islamic period through Quranic era, Abbasid literature to renaissance period in which the modernization of Arabic literature started in Egypt. It also traces the spread of Arabic literature in Nigeria from the pre-colonial era during the Kanuri rulers to Jihad of Usman Dan Fodio and the development of literature which manifested to the Teacher’s Colleges and Bayero University in Northern Nigeria. Also, the establishment of primary and post-primary schools by Muslim organizations in many cities and towns of the Western part of Nigeria. Literary criticism was also discussed in line with Arabic literature. Poetry work of eminent poets were cited to show its importance in line with educational transformation in Nigerian literature and lessons from the cited Arabic poetry works were also highlighted to include: motivation to behave well and to tolerate others, better spirits of interaction, love and co-existence among different sexes, religion etc. All these can help in developing a better educational transformation in Nigeria which can in turn help in how to conduct researches for national development. The paper recommended compulsory Arabic literature at all levels of the nations’ educational system as well as publication of Arabic books and journals to encourage peace in this era of conflicts and further transform Nigeria’s educational system for better.Keywords: Arabic, literature, peace, development, Nigeria
Procedia PDF Downloads 4763257 Analysis of Engagement Methods in the College Classroom Post Pandemic
Authors: Marsha D. Loda
Abstract:
College enrollment is declining and generation Z, today’s college students, are struggling. Before the pandemic, researchers characterized this generational cohort as unique. Gen Z has been called the most achievement-oriented generation, as they enjoy greater economic status, are more racially and ethnically diverse, and better educated than any other generation. However, they are also the most likely generation to suffer from depression and anxiety. Gen Z has grown up largely with usually well-intentioned but overprotective parents who inadvertently kept them from learning life skills, likely impacting their ability to cope with and to effectively manage challenges. The unprecedented challenges resulting from the pandemic up ended their world and left them emotionally reeling. One of the ramifications of this for higher education is how to reengage current Gen Z students in the classroom. This research presents qualitative findings from 24 single-spaced pages of verbatim comments from college students. Research questions concerned what helps them learn and what they abhor, as well as how to engage them with the university outside of the classroom to aid in retention. Students leave little doubt about what they want to experience in the classroom. In order of mention, students want discussion, to engage with questions, to hear how a topic relates to real life and the real world, to feel connections with the professor and fellow students, and to have an opportunity to give their opinions. They prefer a classroom that involves conversation, with interesting topics and active learning. “professor talks instead of lecturing” “professor builds a connection with the classroom” “I am engaged because it feels like a respectful conversation” Similarly, students are direct about what they dislike in a classroom. In order of frequency, students dislike teachers unenthusiastically reading word or word from notes or presentations, repeating the text without adding examples, or addressing how to apply the information. “All lecture. I can read the book myself” “Not taught how to apply the skill or lesson” “Lectures the entire time. Lesson goes in one ear and out the other.” Pertaining to engagement outside the classroom, Gen Z challenges higher education to step outside the box. They don’t want to just hear from professionals in their field, they want to meet and interact with them. Perhaps because of their dependence on technology and pandemic isolation, they seem to reach out for assistance in forming social bonds. “I believe fun and social events are the best way to connect with students and get them involved. Cookouts, raffles, socials, or networking events would all most likely appeal to many students”. “Events… even if they aren’t directly related to learning. Maybe like movie nights… doing meet ups at restaurants”. Qualitative research suggests strategy. This research is rife with strategic implications to improve learning, increase engagement and reduce drop-out rates among Generation Z higher education students. It also compliments existing research on student engagement. With college enrollment declining by some 1.3 million students over the last two years, this research is both timely and important.Keywords: college enrollment, generation Z, higher education, pandemic, student engagement
Procedia PDF Downloads 1053256 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon
Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira
Abstract:
Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning
Procedia PDF Downloads 663255 Educational Experience and the Investigation Results: Creation of New Healthy Products
Authors: G. Espinosa Garza, I. Loera, N. Antonyan
Abstract:
In the last decades, teaching in particular engineering subjects is going through a significative problem. A quick evaluation of the entrepreneurial surroundings makes it more difficult for students to identify the course contents with real situations related with their future professions. Proposing teaching through challenges or problem-based projects, and real-life situations is turning into an important challenge for any university-level educator. The objective of this work is to present the educational experience and the investigation results taken through the Project Viability course, done by a group of professors and students from the Technologic of Monterrey. Currently, in Mexico, the orange peels are considered a dispose and they are not being utilized as an alternative to create subproducts. However, there is a great opportunity in its use as a raw material with the goal to originate the waste from the local citric firms or business. The project challenge consisted in the development of edible products from the orange peel with the intention to generate new healthy products. With this project, apart from the obtainment of the original results, the accomplishment consisted in creating a learning atmosphere, where students together with the professors were able to plan, evaluate, and implement the project related with the creative, innovative, and sustainable processes with the goal to apply it in the development of local solutions. In the present article, the pedagogic methodologies that allowed to carry out this project will be discussed.Keywords: engineering subjects, learning project, orange peel, sustainable process
Procedia PDF Downloads 2893254 Effectiveness of Gamified Simulators in the Health Sector
Authors: Nuno Biga
Abstract:
The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness
Procedia PDF Downloads 143253 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3893252 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1703251 Self-Regulation and School Adjustment of Students with Autism Spectrum Disorder in Hong Kong
Authors: T. S. Terence Ma, Irene T. Ho
Abstract:
Conducting adequate assessment of the challenges students with ASD (Autism Spectrum Disorder) face and the support they need is imperative for promoting their school adjustment. Students with ASD often show deficits in communication, social interaction, emotional regulation, and self-management in learning. While targeting these areas in intervention is often helpful, we argue that not enough attention has been paid to weak self-regulation being a key factor underlying their manifest difficulty in all these areas. Self-regulation refers to one’s ability to moderate their behavioral or affective responses without assistance from others. Especially for students with high functioning autism, who often show problems not so much in acquiring the needed skills but rather in applying those skills appropriately in everyday problem-solving, self-regulation becomes a key to successful adjustment in daily life. Therefore, a greater understanding of the construct of self-regulation, its relationship with other daily skills, and its role in school functioning for students with ASD would generate insights on how students’ school adjustment could be promoted more effectively. There were two focuses in this study. Firstly, we examined the extent to which self-regulation is a distinct construct that is differentiable from other daily skills and the most salient indicators of this construct. Then we tested a model of relationships between self-regulation and other daily school skills as well as their relative and combined effects on school adjustment. A total of 1,345 Grade1 to Grade 6 students with ASD attending mainstream schools in Hong Kong participated in the research. In the first stage of the study, teachers filled out a questionnaire consisting of 136 items assessing a wide range of student skills in social, emotional and learning areas. Results from exploratory factor analysis (EFA) with 673 participants and subsequent confirmatory factor analysis (CFA) with another group of 672 participants showed that there were five distinct factors of school skills, namely (1) communication skills, (2) pro-social behavior, (3) emotional skills, (4) learning management, and (5) self-regulation. Five scales representing these skill dimensions were generated. In the second stage of the study, a model postulating the mediating role of self-regulation for the effects of the other four types of skills on school adjustment was tested with structural equation modeling (SEM). School adjustment was defined in terms of the extent to which the student is accepted well in school, with high engagement in school life and self-esteem as well as good interpersonal relationships. A 5-item scale was used to assess these aspects of school adjustment. Results showed that communication skills, pro-social behavior, emotional skills and learning management had significant effects on school adjustment only indirectly through self-regulation, and their total effects were found to be not high. The results indicate that support rendered to students with ASD focusing only on the training of well-defined skills is not adequate for promoting their inclusion in school. More attention should be paid to the training of self-management with an emphasis on the application of skills backed by self-regulation. Also, other non-skill factors are important in promoting inclusive education.Keywords: autism, assessment, factor analysis, self-regulation, school adjustment
Procedia PDF Downloads 1063250 Experiences of Students with SLD at University: A Case Study
Authors: Lorna Martha Dreyer
Abstract:
Consistent with the changing paradigm on the rights of people with disabilities and in pursuit of social justice, there is internationally an increase in students with disabilities enrolling at Higher Education Institutions (HEIs). This trend challenges HEI’s to transform and attain Education for All (EFA) as a global imperative. However, while physical and sensory disabilities are observable, students with specific learning disabilities (SLD) do not present with any visible indications and are often referred to as “hidden” or “invisible” disabilities. This qualitative case study aimed to illuminate the experiences of students with SLDs at a South African university. The research was, therefore, guided by Vygotsky’s social-cultural theory (SCT). This research was conducted within a basic qualitative research methodology embedded in an interpretive paradigm. Data was collected through an online background survey and semi-structured interviews. Thematic qualitative content analysis was used to analyse the collected data systematically. From a social justice perspective, the major findings suggest that there are several factors that impede equal education for students with SLDs at university. Most participants in this small-scale study experienced a lack of acknowledgment and support from lecturers. They reported valuing the support of family and friends more than that of lecturers. It is concluded that lecturers need to be reflective of their pedagogical practices if authentic inclusion is to be realised.Keywords: higher education, inclusive education, pedagogy, social-cultural theory, specific learning disabilities
Procedia PDF Downloads 1473249 The Influence of Students’ Race and Socioeconomic Status on Teachers’ Assessment of ADHD: Implications for Educational Inequalities
Authors: Justine McKay
Abstract:
Implicit Bias and its impact on the schooling experience of racial minorities with ADHD is significant. ADHD has become a globally diagnosed disorder. The lack of an objective diagnostic tool for ADHD has created controversy over the disease and its validity. ADHD is referred to as a social construct or a suburban problem related to active white boys who disrupt classrooms. The subjectivity of an ADHD diagnosis and the diagnostic process is based on norm-referenced checklists of behaviours completed by the student, caregiver, teachers, clinicians, and other community members. Teachers' perceptions of classroom behaviours are influenced by implicit bias related to race and socioeconomic status. The same behaviours displayed by white and marginalized or low-income students are perceived differently. The white student is perceived to be struggling academically and needing support, while the marginalized or lower-income student's behaviour is seen as disruptive or criminal. The presence of teacher implicit bias results in the inequity of diagnosis, and academic support, which has long-term implications for these students. The subjectivity of the diagnostic process socially reproduces the systemic injustice of opportunity for marginalized youth within the education system.Keywords: ADHD, education, equity, implicit bias, subjectivity
Procedia PDF Downloads 733248 Automation of AAA Game Development using AI and Procedural Generation
Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga
Abstract:
The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.Keywords: AAA games, AI, automation tools, game development
Procedia PDF Downloads 273247 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 53246 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning
Procedia PDF Downloads 1163245 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 243244 Examining Cross-Cultural Inclusive Practices for Students with Intellectual & Developmental Disabilities (IDD)
Authors: Adriana Rivera Vega, Micheal McCaurhty, Christina Cipriano
Abstract:
The world is becoming increasingly more diverse- ethnically, racially, and socially. Additionally, racial/ethnic minority students with intellectual and developmental disabilities (IDD) tend to be disproportionately represented in more restrictive special education classrooms than in general education classrooms. Inclusive practices play a significant role in the lives of individuals with IDD). A student's cultural identity also plays a salient role in teaching, learning, and student outcomes. It is, however, unclear whether and how the cultural identities of students with IDD are reflected in terminology, definitions, and practices related to inclusive education. As a part of a larger scoping review investigating inclusive practices for youth with IDD, this secondary study examines one facet of inclusion: cultural identity. Previous research suggests that students with IDD benefit from interventions based on their cultural background. A review of the limited peer-reviewed and grey literature on this subject revealed that the terminology, definitions, and practices around inclusive education tend to overlook students’ cultural identity in the teaching and learning processes for this population. Implications for future research are presented and recommendations for inclusive-based theoretical frameworks and inclusive practices using a cultural identity perspective are discussed.Keywords: education, Psychology, policy, Multicultural Psychology
Procedia PDF Downloads 43243 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman
Authors: Mahmoud Mohamed Emam
Abstract:
In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.Keywords: learning disabilities, phonemic awareness, third graders, Oman
Procedia PDF Downloads 6423242 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 563241 Protection of Human Rights in Polish Centres for Foreigners – in the Context of the European Human Rights System
Authors: Oktawia Braniewicz
Abstract:
The phenomenon of emigration and migration increasingly affects Poland's borders as well. For this reason, it is necessary to examine the level of protection of Human Rights in Polish Centres for Foreigners. The field study covered 11 centers for Foreigners in the provinces Kujawsko-Pomorskie Region, Lubelskie Region, Lodzkie Region, Mazowieckie Region and Podlaskie Region. Photographic documentation of living and social conditions, conversations with center employees and refugees allow to show a comprehensive picture of the situation prevailing in Centres for Foreigners. The object of reflection will be, in particular, the standards resulting from art. 8 and 13 of the Convention for the Protection of Human Rights and Fundamental Freedoms and article 2 of Protocol No. 1 to the Convention for the Protection of Human Rights and Fundamental Freedoms. The degree of realization of the right to education and the right to respect for family and private life will be shown. Issues related to learning the Polish language, access to a professional translator and psychological help will also be approximated. Learning Polish is not obligatory, which causes problems with assimilation and integration with other members of the new community. In centers for foreigners, there are no translators - a translator from an external company is rented if necessary. The waiting time for an interpreter makes the refugees feel anxious, unable to communicate with the employees of the centers (this is a situation in which the refugees do not know either English, Polish or Russian). Psychologist's help is available on designated days of the week. There is no separate specialist in child psychology, which is a serious problem.Keywords: human rights, Polish centres, foreigners, fundamental freedoms
Procedia PDF Downloads 1333240 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals
Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge
Abstract:
It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.Keywords: blockchain, deep learning, NLP, monitoring system
Procedia PDF Downloads 1333239 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence
Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park
Abstract:
Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.Keywords: broadcasting contents, scripts, text similarity, topic model
Procedia PDF Downloads 318