Search results for: reliability modeling
1238 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 2561237 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad Daba, Jean-Pierre Dubois
Abstract:
Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process
Procedia PDF Downloads 4481236 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 661235 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 1931234 Towards Modern Approaches of Intelligence Measurement for Clinical and Educational Practices
Authors: Alena Kulikova, Tatjana Kanonire
Abstract:
Intelligence research is one of the oldest fields of psychology. Many factors have made a research on intelligence, defined as reasoning and problem solving [1, 2], a very acute and urgent problem. Thus, it has been repeatedly shown that intelligence is a predictor of academic, professional, and social achievement in adulthood (for example, [3]); Moreover, intelligence predicts these achievements better than any other trait or ability [4]. The individual level, a comprehensive assessment of intelligence is a necessary criterion for the diagnosis of various mental conditions. For example, it is a necessary condition for psychological, medical and pedagogical commissions when deciding on educational needs and the most appropriate educational programs for school children. Assessment of intelligence is crucial in clinical psychodiagnostic and needs high-quality intelligence measurement tools. Therefore, it is not surprising that the development of intelligence tests is an essential part of psychological science and practice. Many modern intelligence tests have a long history and have been used for decades, for example, the Stanford-Binet test or the Wechsler test. However, the vast majority of these tests are based on the classic linear test structure, in which all respondents receive all tasks (see, for example, a critical review by [5]). This understanding of the testing procedure is a legacy of the pre-computer era, in which blank testing was the only diagnostic procedure available [6] and has some significant limitations that affect the reliability of the data obtained [7] and increased time costs. Another problem with measuring IQ is that classical line-structured tests do not fully allow to measure respondent's intellectual progress [8], which is undoubtedly a critical limitation. Advances in modern psychometrics allow for avoiding the limitations of existing tools. However, as in any rapidly developing industry, at the moment, psychometrics does not offer ready-made and straightforward solutions and requires additional research. In our presentation we would like to discuss the strengths and weaknesses of the current approaches to intelligence measurement and highlight “points of growth” for creating a test in accordance with modern psychometrics. Whether it is possible to create the instrument that will use all achievements of modern psychometric and remain valid and practically oriented. What would be the possible limitations for such an instrument? The theoretical framework and study design to create and validate the original Russian comprehensive computer test for measuring the intellectual development in school-age children will be presented.Keywords: Intelligence, psychometrics, psychological measurement, computerized adaptive testing, multistage testing
Procedia PDF Downloads 801233 Social Identification among Employees: A System Dynamic Approach
Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed
Abstract:
Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking
Procedia PDF Downloads 1371232 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 1311231 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications
Authors: Mallikarjunachari Gangapuram
Abstract:
The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.Keywords: hematite, hydrogel, nanoindentation, nano-DMA
Procedia PDF Downloads 1921230 Effects of Group Cognitive Restructuring and Rational Emotive Behavioral Therapy on Psychological Distress of Awaiting-Trial Inmates in Correctional Centers in North- West, Nigeria
Authors: Muhammad Shafi'u Adamu
Abstract:
This study examined the effects of two Group Cognitive Behavioural Therapies (Cognitive Restructuring and Rational Emotive Behavioural Therapy) on Psychological Distress of awaiting-trial Inmates in Correctional Centres in North-West, Nigeria. The study had four specific objectives, four research questions, and four null hypotheses. The study used a quasi-experimental design that involved pre-test and post-test. The population comprised of all 7,962 awaiting-trial inmates in correctional centres in North-west, Nigeria. 131 awaiting trial inmates from three intact Correctional Centres were randomly selected using the census technique. The respondents were sampled and randomly put into 3 groups (CR, REBT and Control). Kessler Psychological Distress Scale (K10) was adapted for data collection in the study. The instrument was validated by experts and subjected to pilot study using Cronbach's Alpha with reliability co-efficient of 0.772. Each group received treatment for 8 consecutive weeks (60 minutes/week). Data collected from the field were subjected to descriptive statistics of mean, standard deviation and mean difference to answer the research questions. Inferential statistics of ANOVA and independent sample t-test were used to test the null hypotheses at P≤ 0.05 level of significance. Results in the study revealed that there was no significant difference among the pre-treatment mean scores of experimental and control groups. Statistical evidence also showed a significant difference among the mean sores of the three groups, and thus, results of the Post Hoc multiple-comparison test indicating the posttreatment reduction of psychological distress on the awaiting-trial inmates. Documented output also showed a significant difference between the post-treatment psychologically distressed mean scores of male and female awaiting-trial inmates, but there was no difference on those exposed to REBT. The research recommends that a standardized structured CBT counselling technique treatment should be designed for correctional centres across Nigeria, and CBT counselling techniques could be used in the treatment of PD in both correctional and clinical settings.Keywords: awaiting-trial inmates, cognitive restructuring, correctional centres, group cognitive behavioural therapies, rational emotive behavioural therapy
Procedia PDF Downloads 881229 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 101228 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1741227 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow
Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi
Abstract:
Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation
Procedia PDF Downloads 1561226 Spatial Differentiation Patterns and Influencing Mechanism of Urban Greening in China: Based on Data of 289 Cities
Authors: Fangzheng Li, Xiong Li
Abstract:
Significant differences in urban greening have occurred in Chinese cities, which accompanied with China's rapid urbanization. However, few studies focused on the spatial differentiation of urban greening in China with large amounts of data. The spatial differentiation pattern, spatial correlation characteristics and the distribution shape of urban green space ratio, urban green coverage rate and public green area per capita were calculated and analyzed, using Global and Local Moran's I using data from 289 cities in 2014. We employed Spatial Lag Model and Spatial Error Model to assess the impacts of urbanization process on urban greening of China. Then we used Geographically Weighted Regression to estimate the spatial variations of the impacts. The results showed: 1. a significant spatial dependence and heterogeneity existed in urban greening values, and the differentiation patterns were featured by the administrative grade and the spatial agglomeration simultaneously; 2. it revealed that urbanization has a negative correlation with urban greening in Chinese cities. Among the indices, the the proportion of secondary industry, urbanization rate, population and the scale of urban land use has significant negative correlation with the urban greening of China. Automobile density and per capita Gross Domestic Product has no significant impact. The results of GWR modeling showed that the relationship between urbanization and urban greening was not constant in space. Further, the local parameter estimates suggested significant spatial variation in the impacts of various urbanization factors on urban greening.Keywords: China’s urbanization, geographically weighted regression, spatial differentiation pattern, urban greening
Procedia PDF Downloads 4601225 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2611224 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 421223 Creative Element Analysis of Machinery Creativity Contest Works
Authors: Chin-Pin, Chen, Shi-Chi, Shiao, Ting-Hao, Lin
Abstract:
Current industry is facing the rapid development of new technology in the world and fierce changes of economic environment in the society so that the industry development trend gradually does not focus on labor, but leads the industry and the academic circle with innovation and creativity. The development trend in machinery industry presents the same situation. Based on the aim of Creativity White Paper, Ministry of Education in Taiwan promotes and develops various creativity contests to cope with the industry trend. Domestic students and enterprises have good performance on domestic and international creativity contests in recent years. There must be important creative elements in such creative works to win the award among so many works. Literature review and in-depth interview with five creativity contest awarded instructors are first proceeded to conclude 15 machinery creative elements, which are further compared with the creative elements of machinery awarded creative works in past five years to understand the relationship between awarded works and creative elements. The statistical analysis results show that IDEA (Industrial Design Excellence Award) contains the most creative elements among four major international creativity contests. That is, most creativity review focuses on creative elements that are comparatively stricter. Concerning the groups participating in creativity contests, enterprises consider more creative elements of the creative works than other two elements for contests. From such contest works, creative elements of “replacement or improvement”, “convenience”, and “modeling” present higher significance. It is expected that the above findings could provide domestic colleges and universities with reference for participating in creativity related contests in the future.Keywords: machinery, creative elements, creativity contest, creativity works
Procedia PDF Downloads 4421222 Generalized Linear Modeling of HCV Infection Among Medical Waste Handlers in Sidama Region, Ethiopia
Authors: Birhanu Betela Warssamo
Abstract:
Background: There is limited evidence on the prevalence and risk factors for hepatitis C virus (HCV) infection among waste handlers in the Sidama region, Ethiopia; however, this knowledge is necessary for the effective prevention of HCV infection in the region. Methods: A cross-sectional study was conducted among randomly selected waste collectors from October 2021 to 30 July 2022 in different public hospitals in the Sidama region of Ethiopia. Serum samples were collected from participants and screened for anti-HCV using a rapid immunochromatography assay. Socio-demographic and risk factor information of waste handlers was gathered by pretested and well-structured questionnaires. The generalized linear model (GLM) was conducted using R software, and P-value < 0.05 was declared statistically significant. Results: From a total of 282 participating waste handlers, 16 (5.7%) (95% CI, 4.2 – 8.7) were infected with the hepatitis C virus. The educational status of waste handlers was the significant demographic variable that was associated with the hepatitis C virus (AOR = 0.055; 95% CI = 0.012 – 0.248; P = 0.000). More married waste handlers, 12 (75%), were HCV positive than unmarried, 4 (25%) and married waste handlers were 2.051 times (OR = 2.051, 95%CI = 0.644 –6.527, P = 0.295) more prone to HCV infection, compared to unmarried, which was statistically insignificant. The GLM showed that exposure to blood (OR = 8.26; 95% CI = 1.878–10.925; P = 0.037), multiple sexual partners (AOR = 3.63; 95% CI = 2.751–5.808; P = 0.001), sharp injury (AOR = 2.77; 95% CI = 2.327–3.173; P = 0.036), not using PPE (AOR = 0.77; 95% CI = 0.032–0.937; P = 0.001), contact with jaundiced patient (AOR = 3.65; 95% CI = 1.093–4.368; P = 0 .0048) and unprotected sex (AOR = 11.91; 95% CI = 5.847–16.854; P = 0.001) remained statistically significantly associated with HCV positivity. Conclusions: The study revealed that there was a high prevalence of hepatitis C virus infection among waste handlers in the Sidama region, Ethiopia. This demonstrated that there is an urgent need to increase preventative efforts and strategic policy orientations to control the spread of the hepatitis C virus.Keywords: Hepatitis C virus, risk factors, waste handlers, prevalence, Sidama Ethiopia
Procedia PDF Downloads 141221 Spirometric Reference Values in 236,606 Healthy, Non-Smoking Chinese Aged 4–90 Years
Authors: Jiashu Shen
Abstract:
Objectives: Spirometry is a basic reference for health evaluation which is widely used in clinical. Previous reference of spirometry is not applicable because of drastic changes of social and natural circumstance in China. A new reference values for the spirometry of the Chinese population is extremely needed. Method: Spirometric reference value was established using the statistical modeling method Generalized Additive Models for Location, Scale and Shape for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and maximal mid-expiratory flow (MMEF). Results: Data from 236,606 healthy non-smokers aged 4–90 years was collected from the MJ Health Check database. Spirometry equations for FEV1, FVC, MMEF, and FEV1/FVC were established, including the predicted values and lower limits of normal (LLNs) by sex. The predictive equations that were developed for the spirometric results elaborated the relationship between spirometry and age, and they eliminated the effects of height as a variable. Most previous predictive equations for Chinese spirometry were significantly overestimated (to be exact, with mean differences of 22.21% in FEV1 and 31.39% in FVC for males, along with differences of 26.93% in FEV1 and 35.76% in FVC for females) or underestimated (with mean differences of -5.81% in MMEF and -14.56% in FEV1/FVC for males, along with a difference of -14.54% in FEV1/FVC for females) the results of lung function measurements as found in this study. Through cross-validation, our equations were established as having good fit, and the means of the measured value and the estimated value were compared, with good results. Conclusions: Our study updates the spirometric reference equations for Chinese people of all ages and provides comprehensive values for both physical examination and clinical diagnosis.Keywords: Chinese, GAMLSS model, reference values, spirometry
Procedia PDF Downloads 1361220 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles
Authors: Wanwadee Neamsakul
Abstract:
VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum
Procedia PDF Downloads 1501219 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 1881218 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 761217 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 2141216 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1241215 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method
Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey
Abstract:
Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear
Procedia PDF Downloads 1301214 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 1621213 Culture Dimensions of Information Systems Security in Saudi Arabia National Health Services
Authors: Saleh Alumaran, Giampaolo Bella, Feng Chen
Abstract:
The study of organisations’ information security cultures has attracted scholars as well as healthcare services industry to research the topic and find appropriate tools and approaches to develop a positive culture. The vast majority of studies in Saudi national health services are on the use of technology to protect and secure health services information. On the other hand, there is a lack of research on the role and impact of an organisation’s cultural dimensions on information security. This research investigated and analysed the role and impact of cultural dimensions on information security in Saudi Arabia health service. Hypotheses were tested and two surveys were carried out in order to collect data and information from three major hospitals in Saudi Arabia (SA). The first survey identified the main cultural-dimension problems in SA health services and developed an initial information security culture framework model. The second survey evaluated and tested the developed framework model to test its usefulness, reliability and applicability. The model is based on human behaviour theory, where the individual’s attitude is the key element of the individual’s intention to behave as well as of his or her actual behaviour. The research identified six cultural dimensions: Saudi national culture, Saudi health service leadership, employees’ trust, technology, multicultural interactions and employees’ job roles. The research also identified a set of cultural sub-dimensions. These include working values and norms, tribe values and norms, attitudes towards women, power sharing, vision, social interaction, respect and understanding, hospital intra-net, hospital employees’ language(s) used, multi-national culture, communication system, employees’ job satisfaction and job security. The research identified that (a) the human behaviour towards medical information in SA is one of the main threats to information security and one of the main challenges to SA health authority, (b) The current situation of SA hospitals’ IS cultures is falling short in protecting medical information due to the current value and norms towards information security, (c) Saudi national culture and employees’ job role are the main dimensions playing major roles in the employees’ attitude, and technology is the least important dimension playing a role in the employees’ attitudes.Keywords: cultural dimension, electronic health record, information security, privacy
Procedia PDF Downloads 3511212 Mental Health Challenges, Internalizing and Externalizing Behavior Problems, and Academic Challenges among Adolescents from Broken Families
Authors: Fadzai Munyuki
Abstract:
Parental divorce is one of youth's most stressful life events and is associated with long-lasting emotional and behavioral problems. Over the last few decades, research has consistently found strong associations between divorce and adverse health effects in adolescents. Parental divorce has been hypothesized to lead to psychosocial development problems, mental health challenges, internalizing and externalizing behavior problems, and low academic performance among adolescents. This is supported by the Positive youth development theory, which states that a family setup has a major role to play in adolescent development and well-being. So, the focus of this research will be to test this hypothesized process model among adolescents in five provinces in Zimbabwe. A cross-sectional study will be conducted to test this hypothesis, and 1840 (n = 1840) adolescents aged between 14 to 17 will be employed for this study. A Stress and Questionnaire scale, a Child behavior checklist scale, and an academic concept scale will be used for this study. Data analysis will be done using Structural Equations Modeling. This study has many limitations, including the lack of a 'real-time' study, a few cross-sectional studies, a lack of a thorough and validated population measure, and many studies that have been done that have focused on one variable in relation to parental divorce. Therefore, this study seeks to bridge this gap between past research and current literature by using a validated population measure, a real-time study, and combining three latent variables in this study.Keywords: mental health, internalizing and externalizing behavior, divorce, academic achievements
Procedia PDF Downloads 771211 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 3451210 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening
Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan
Abstract:
Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.Keywords: cytotoxicity, high-throughput, impedance, nanomaterials
Procedia PDF Downloads 3611209 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 155