Search results for: complex interactions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6824

Search results for: complex interactions

2324 Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain

Authors: M. N. Yahaya, K. A. Salako, U. Z. Magawata

Abstract:

Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively.

Keywords: vertical electrical sounding, resistivity, geo-electric, resistivity, aquifer and groundwater

Procedia PDF Downloads 153
2323 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 414
2322 US-Iran Hostage Crisis by the Metaphor of Argo in the Light of Post-Modernist Post-Colonial and Realist Theories

Authors: Hatice Idil Gorgen

Abstract:

This paper argues that discourses and textuality which is literary tool of Western ethnocentrism create aggressive foreign policy against the West by Non-West countries. Quasi-colonial experiences create an inferiority complex on officially or not colonized areas by reconstructing their identity. This reconstructed identity leads revolution and resistance movement to feel secure themselves as a psychological defense against colonial powers. Knowledge learned by successful implementation of discourses grants right to has power for authority, in addition to serving as a tool to reinforce power of authority by its cognitive traits on foreign policy decision making. The combination of these points contributes to shaping and then make predictable state policies. In the methodology of paper, secondary data was firstly reviewed through university library using a range of sources such as academic abstract, OPAC system, bibliography databases and internet search engines. The film of Argo was used to strengthen and materialize theoretical explanations as a metaphor. This paper aims to highlight the cumulative effects on the construction of the identity throughout embedded discourses by textuality. To demonstrate it by a metaphor, Argo will be used as a primary source for good story-telling about history. U.S-Iran hostage crisis is mainly applied by aiming to see foundations Iran’s behavior in the context of its revolutionary identity and major influences of actions of U.S on it.

Keywords: discourse, post colonialism, post modernism, objectivity

Procedia PDF Downloads 153
2321 A Study on How to Develop the Usage Metering Functions of BIM (Building Information Modeling) Software under Cloud Computing Environment

Authors: Kim Byung-Kon, Kim Young-Jin

Abstract:

As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of BIM (Building Information Modeling) technologies for 3D design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed how to develop the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. To this end, the author surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the results & findings of the foregoing survey & analysis, the author proposed herein how to optimally develop the usage metering functions of cloud BIM software.

Keywords: construction IT, BIM (Building Information Modeling), cloud computing, BIM-based cloud computing, 3D design, cloud BIM

Procedia PDF Downloads 499
2320 Cell Adhesion, Morphology and Cytokine Expression of Synoviocytes Can Be Altered on Different Nano-Topographic Oxidized Silicon Nanosponges

Authors: Hung-Chih Hsu, Pey-Jium Chang, Ching-Hsein Chen, Jer-Liang Andrew Yeh

Abstract:

Osteoarthritis (OA) is a common disorder in rehabilitation clinic. The main characteristics include joint pain, localized tenderness and enlargement, joint effusion, cartilage destruction, loss of adhesion of perichondrium, synovium hyperplasia. Synoviocytes inflammation might be a cause of local tenderness and effusion. Inflammation cytokines might also play an important role in joint pain, cartilage destruction, decrease adhesion of perichondrium to the bone. Treatments of osteoarthritis include non-steroid anti-inflammation drugs (NSAID), glucosamine supplementation, hyaluronic acid, arthroscopic debridement, and total joint replacement. Total joint replacement is commonly used in patients with severe OA who failed respond to pharmacological treatment. However, some patients received surgery had serious adverse events, including instability of the implants due to insufficient adhesion to the adjacent bony tissue or synovial inflammation. We tried to develop ideal nano-topographic oxidized silicon nanosponges by using with various chemicals to produce thickness difference in nanometers in order to study more about the cell-environment interactions in vitro like the alterations of cell adhesion, morphology, extracellular matrix secretions in the pathogenesis of osteoarthritis. Cytokines studies like growth factor, reactive oxygen species, reactive inflammatory materials (Like nitrous oxide and prostaglandin E2), extracellular matrix (ECM) degradation enzymes, and synthesis of collagen will also be observed and discussed. Extracellular and intracellular expression transforming growth factor beta (TGF-β) will be studied by reverse transcription-polymerase chain reaction (RT-PCR). The degradation of ECM will be observed by the bioactivity ratio of matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase by ELISA (Enzyme-linked immunosorbent assay). When rabbit synoviocytes were cultured on these nano-topographic structures, they demonstrate better cell adhesion rate, decreased expression of MMP-2,9 and PGE2, and increased expression of TGF-β when cultured in nano-topographic oxidized silicon nanosponges than in the planar oxidized silicon ones. These results show cell behavior, cytokine production can be influenced by physical characteristics from different nano-topographic structures. Our study demonstrates the possibility of manipulating cell behavior in these nano-topographic biomaterials.

Keywords: osteoarthritis, synoviocyte, oxidized silicon surfaces, reactive oxygen species

Procedia PDF Downloads 381
2319 Development and Obtaining of Solid Dispersions to Increase the Solubility of Efavirenz in Anti-HIV Therapy

Authors: Salvana P. M. Costa, Tarcyla A. Gomes, Giovanna C. R. M. Schver, Leslie R. M. Ferraz, Cristovão R. Silva, Magaly A. M. Lyra, Danilo A. F. Fonte, Larissa A. Rolim, Amanda C. Q. M. Vieira, Miracy M. Albuquerque, Pedro J. Rolim-neto

Abstract:

Efavirenz (EFV) is considered one of the most widely used anti-HIV drugs. However, it is classified as a drug class II (poorly soluble, highly permeable) according to the biopharmaceutical classification system, presenting problems of absorption in the gastrointestinal tract and thereby inadequate bioavailability for its therapeutic action. This study aimed to overcome these barriers by developing and obtaining solid dispersions (SD) in order to increase the EFZ bioavailability. For the development of SD with EFV, theoretical and practical studies were initially performed. Thus, there was a choice of a carrier to be used. For this, it was analyzed the various criteria such as glass transition temperature of the polymer, intra- and intermolecular interactions of hydrogen bonds between drug and polymer, the miscibility between the polymer and EFV. The choice of the obtainment method of the SD came from the analysis of which method is the most consolidated in both industry and literature. Subsequently, the choice of drug and carrier concentrations in the dispersions was carried out. In order to obtain DS to present the drug in its amorphous form, as the DS were obtained, they were analyzed by X-ray diffraction (XRD). SD are more stable the higher the amount of polymer present in the formulation. With this assumption, a SD containing 10% of drug was initially prepared and then this proportion was increased until the XRD showed the presence of EFV in its crystalline form. From this point, it was not produced SD with a higher concentration of drug. Thus, it was allowed to select PVP-K30, PVPVA 64 and the SOLUPLUS formulation as carriers, once it was possible the formation of hydrogen bond between EFV and polymers since these have hydrogen acceptor groups capable of interacting with the donor group of the drug hydrogen. It is worth mentioning also that the films obtained, independent of concentration used, were presented homogeneous and transparent. Thus, it can be said that the EFV is miscible in the three polymers used in the study. The SD and Physical Mixtures (PM) with these polymers were prepared by the solvent method. The EFV diffraction profile showed main peaks at around 2θ of 6,24°, in addition to other minor peaks at 14,34°, 17,08°, 20,3°, 21,36° and 25,06°, evidencing its crystalline character. Furthermore, the polymers showed amorphous nature, as evidenced by the absence of peaks in their XRD patterns. The XRD patterns showed the PM overlapping profile of the drug with the polymer, indicating the presence of EFV in its crystalline form. Regardless the proportion of drug used in SD, all the samples showed the same characteristics with no diffraction peaks EFV, demonstrating the behavior amorphous products. Thus, the polymers enabled, effectively, the formation of amorphous SD, probably due to the potential hydrogen bonds between them and the drug. Moreover, the XRD analysis showed that the polymers were able to maintain its amorphous form in a concentration of up to 80% drug.

Keywords: amorphous form, Efavirenz, solid dispersions, solubility

Procedia PDF Downloads 564
2318 Towards Green(er) Cities: The Role of Spatial Planning in Realising the Green Agenda

Authors: Elizelle Juaneé Cilliers

Abstract:

The green hype is becoming stronger within various disciplines, modern practices and academic thinking, enforced by concepts such as eco-health, eco-tourism, eco-cities, and eco-engineering. There is currently also an expanded scientific understanding regarding the value and benefits relating to green infrastructure, for both communities and their host cities, linked to broader sustainability and resilience thinking. The integration and implementation of green infrastructure as part of spatial planning approaches and municipal planning, are, however, more complex, especially in South Africa, inflated by limitations of budgets and human resources, development pressures, inequities in terms of green space availability and political legacies of the past. The prevailing approach to spatial planning is further contributing to complexity, linked to misguided perceptions of the function and value of green infrastructure. As such, green spaces are often considered a luxury, and green infrastructure a costly alternative, resulting in green networks being susceptible to land-use changes and under-prioritized in local authority decision-making. Spatial planning, in this sense, may well be a valuable tool to realise the green agenda, encapsulating various initiatives of sustainability as provided by a range of disciplines. This paper aims to clarify the importance and value of green infrastructure planning as a component of spatial planning approaches, in order to inform and encourage local authorities to embed sustainability thinking into city planning and decision-making approaches. It reflects on the decisive role of land-use management to guide the green agenda and refers to some recent planning initiatives. Lastly, it calls for trans-disciplinary planning approaches to build a case towards green(er) cities.

Keywords: green infrastructure, spatial planning, transdisciplinary, integrative

Procedia PDF Downloads 245
2317 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle

Procedia PDF Downloads 354
2316 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar

Abstract:

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.

Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model

Procedia PDF Downloads 403
2315 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 229
2314 Utilizing Minecraft Java Edition for the Application of Fire Disaster Procedures to Establish Fire Disaster Readiness for Grade 12 STEM students of DLSU-IS

Authors: Aravella Flores, Jose Rafael E. Sotelo, Luis Romulus Phillippe R. Javier, Josh Christian V. Nunez

Abstract:

This study focuses on analyzing the performance of Grade 12 STEM students of De La Salle University - Integrated School that has completed the Disaster Readiness and Risk Reduction course in handling fire hazards through Minecraft Java Edition. This platform is suitable because fire DRRR is challenging to learn in a practical setting as well as questionable with regard to supplementing the successful implementation of textbook knowledge into actual practice. The purpose of this study is to acknowledge whether Minecraft can be a suitable environment to familiarize oneself to fire DRRR. The objectives are achieved through utilizing Minecraft in simulating fire scenarios which allows the participants to freely act upon and practice fire DRRR. The experiment was divided into the grounding and validation phase, where researchers observed the performance of the participants in the simulation. A pre-simulation and post-simulation survey was given to acknowledge the change in participants’ perception of being able to utilize fire DRRR procedures and their vulnerabilities. The paired t-test was utilized, showing significant differences in the pre-simulation and post-simulation survey scores, thus, insinuating improved judgment of DRRR, lessening their vulnerabilities in the possibility of encountering a fire hazard. This research poses a model for future research which can gather more participants and dwell on more complex codes outside just command blocks and into the code lines of Minecraft itself.

Keywords: minecraft, DRRR, fire, disaster, simulation

Procedia PDF Downloads 126
2313 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.

Authors: Sulemana Saibu, Moses Ikpeme

Abstract:

Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.

Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases

Procedia PDF Downloads 80
2312 Case Study of Human Factors and Ergonomics in the Design and Use of Harness-Embedded Costumes in the Entertainment Industry

Authors: Marielle Hanley, Brandon Takahashi, Gerry Hanley, Gabriella Hancock

Abstract:

Safety harnesses and their protocols are very common within the construction industry, and the Occupational Safety and Health Administration has provided extensive guidelines with protocols being constantly updated to ensure the highest level of safety within construction sites. There is also extensive research on harnesses that are meant to keep people in place in moving vehicles, such as seatbelts. Though this research is comprehensive in these areas, the findings and recommendations are not generally applicable to other industry sectors where harnesses are used, such as the entertainment industry. The focus of this case study is on the design and use of harnesses used by theme park employees wearing elaborate costumes in parades and performances. The key factors of posture, kinesthetic factors, and harness engineering interact in significantly different ways when the user is performing repetitive choreography with 20 to 40 lbs. of apparatus connected to harnesses that need to be hidden from the audience’s view. Human factors and ergonomic analysis take into account the required performers’ behaviors, the physical and mental preparation and posture of the performer, the design of the harness-embedded costume, and the environmental conditions during the performance (e.g., wind) that can determine the physical stresses placed on the harness and performer. The uniqueness and expense of elaborate costumes frequently result in one or two costumes created for production, and a variety of different performers need to fit into the same costume. Consequently, the harnesses should be adjustable if they are to minimize the physical and cognitive loads on the performer, but they are frequently more a “one-size fits all”. The complexity of human and technology interactions produces a range of detrimental outcomes, from muscle strains to nerve damage, mental and physical fatigue, and reduced motivation to perform at peak levels. Based on observations conducted over four years for this case study, a number of recommendations to institutionalize the human factors and ergonomic analyses can significantly improve the safety, reliability, and quality of performances with harness-embedded costumes in the entertainment industry. Human factors and ergonomic analyses can be integrated into the engineering design of the performance costumes with embedded harnesses, the conditioning and training of the performers using the costumes, the choreography of the performances within the staged setting and the maintenance of the harness-embedded costumes. By applying human factors and ergonomic methodologies in the entertainment industry, the industry management and support staff can significantly reduce the risks of injury, improve the longevity of unique performers, increase the longevity of the harness-embedded costumes, and produce the desired entertainment value for audiences.

Keywords: ergonomics in entertainment industry, harness-embedded costumes, performer safety, injury prevention

Procedia PDF Downloads 82
2311 Expression of Gro-El under Phloem-Specific Promoter Protects Transgenic Plants against Diverse Begomovirus-Beta Satellite Complex

Authors: Muhammad Yousaf Ali, Shahid Mansoor, Javeria Qazi, Imran Amin, Musarrat Shaheen

Abstract:

Cotton leaf curl disease (CLCuD) is the major threat to the cotton crop and is transmitted by whitefly (Bemisia tabaci). Since multiple begomoviruses and associated satellites are involved in CLCuD, approaches based on the concept of broad-spectrum resistance are essential for effective disease control. Gro-El and G5 are two proteins from whitefly endosymbiont and M13 bacteriophage origin, respectively. Gro-El encapsulates the virus particle when it enters the whitefly and protects the virus from the immune system of the whitefly as well as prevents viral expression in it. This characteristic of Gro-El can be exploited to get resistance against viruses if expressed in plants. G5 is a single-stranded DNA binding protein, expression of which in transgenic plants will stop viral expression on its binding with ssDNA. The use of tissue-specific promoters is more efficient than constitutive promoters. Transgenics of Nicotiana benthamiana for Gro-El under constitutive promoter and Gro-El under phloem specific promoter were made. In comparison to non-transgenic plants, transgenic plants with Gro-El under NSP promoter showed promising results when challenged against cotton leaf curl Multan virus (CLCuMuV) along with cotton leaf curl Multan beta satellite (CLCuMB), cotton leaf curl Khokhran virus (CLCuKoV) along with cotton leaf curl Multan beta satellite (CLCuMB) and Pedilenthus leaf curl virus (PedLCV) along with Tobacco leaf curl beta satellite (TbLCB).

Keywords: cotton leaf curl disease, whitefly, endosymbionts, transgenic, resistance

Procedia PDF Downloads 90
2310 Public Perception of Energy Security in Lithuania: Between Material Interest and Energy Independence

Authors: Dainius Genys, Vylius Leonavicius, Ricardas Krikstolaitis

Abstract:

Energy security problems in Lithuania are analyzed on a regular basis; however, there is no comprehensive research on the very issue of the concept of public energy security. There is a lack of attention not only to social determinants of perception of energy security, but also a lack of a deeper analysis of the public opinion. This article aims to research the Lithuanian public perception of energy security. Complex tasks were set during the sociological study. Survey questionnaire consisted of different sets of questions: view of energy security (risk perception, political orientation, and energy security; comprehensiveness and energy security); view of energy risks and threats (perception of energy safety factors; individual dependence and burden; disobedience and risk); view of the activity of responsible institutions (energy policy assessment; confidence in institutions and energy security), demographic issues. In this article, we will focus on two aspects: a) We will analyze public opinion on the most important aspects of energy security and social factors influencing them; The hypothesis is made that public perception of energy security is related to value orientations: b) We will analyze how public opinion on energy policy executed by the government and confidence in the government are intertwined with the concept of energy security. Data of the survey, conducted on May 10-19 and June 7-17, 2013, when Seimas and the government consisted of the coalition dominated by Social Democrats with Labor, Order and Justice Parties and the Electoral Action of Poles, were used in this article. It is important to note that the survey was conducted prior to Russia’s occupation of the Crimea.

Keywords: energy security, public opinion, risk, energy threat, energy security policy

Procedia PDF Downloads 505
2309 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method

Authors: Pradeepa Teegala, Ramreddy Chetteti

Abstract:

This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method

Procedia PDF Downloads 342
2308 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez

Abstract:

With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).

Keywords: component carrier, carrier aggregation, LTE-advanced, scheduling

Procedia PDF Downloads 193
2307 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers

Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi

Abstract:

Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.

Keywords: electroencephalography, expertise, musical features, real-life music

Procedia PDF Downloads 478
2306 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 145
2305 Predictive Analytics of Bike Sharing Rider Parameters

Authors: Bongs Lainjo

Abstract:

The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.

Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration

Procedia PDF Downloads 129
2304 Stakeholders' Engagement Process in the OBSERVE Project

Authors: Elisa Silva, Rui Lança, Fátima Farinha, Miguel José Oliveira, Manuel Duarte Pinheiro, Cátia Miguel

Abstract:

Tourism is one of the global engines of development. With good planning and management, it can be a positive force, bringing benefits to touristic destinations around the world. However, without constrains, boundaries well established and constant survey, tourism can be very harmful and induce destination’s degradation. In the interest of the tourism sector and the community it is important to develop the destination maintaining its sustainability. The OBSERVE project is an instrument for monitoring and evaluating the sustainability of the region of Algarve. Its main priority is to provide environmental, economic, social-cultural and institutional indicators to support the decision-making process towards a sustainable growth. In the pursuit of the objectives, it is being developed a digital platform where the significant indicators will be continuously updated. It is known that the successful development of a touristic region depends from the careful planning with the commitment of central and regional government, industry, services and community stakeholders. Understand the different perspectives of stakeholders is essential to engage them in the development planning. However, actual stakeholders’ engagement process is complex and not easy to accomplish. To create a consistent system of indicators designed to monitor and evaluate the sustainability performance of a touristic region it is necessary to access the local data and the consideration of the full range of values and uncertainties. This paper presents the OBSERVE project and describes the stakeholders´ engagement process highlighting the contributions, ambitions and constraints.

Keywords: sustainable tourism, stakeholders' engagement, OBSERVE project, Algarve region

Procedia PDF Downloads 160
2303 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores

Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter

Abstract:

Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.

Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment

Procedia PDF Downloads 122
2302 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 248
2301 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 214
2300 Linux Security Management: Research and Discussion on Problems Caused by Different Aspects

Authors: Ma Yuzhe, Burra Venkata Durga Kumar

Abstract:

The computer is a great invention. As people use computers more and more frequently, the demand for PCs is growing, and the performance of computer hardware is also rising to face more complex processing and operation. However, the operating system, which provides the soul for computers, has stopped developing at a stage. In the face of the high price of UNIX (Uniplexed Information and Computering System), batch after batch of personal computer owners can only give up. Disk Operating System is too simple and difficult to bring innovation into play, which is not a good choice. And MacOS is a special operating system for Apple computers, and it can not be widely used on personal computers. In this environment, Linux, based on the UNIX system, was born. Linux combines the advantages of the operating system and is composed of many microkernels, which is relatively powerful in the core architecture. Linux system supports all Internet protocols, so it has very good network functions. Linux supports multiple users. Each user has no influence on their own files. Linux can also multitask and run different programs independently at the same time. Linux is a completely open source operating system. Users can obtain and modify the source code for free. Because of these advantages of Linux, it has also attracted a large number of users and programmers. The Linux system is also constantly upgraded and improved. It has also issued many different versions, which are suitable for community use and commercial use. Linux system has good security because it relies on a file partition system. However, due to the constant updating of vulnerabilities and hazards, the using security of the operating system also needs to be paid more attention to. This article will focus on the analysis and discussion of Linux security issues.

Keywords: Linux, operating system, system management, security

Procedia PDF Downloads 101
2299 Project Time and Quality Management during Construction

Authors: Nahed Al-Hajeri

Abstract:

Time and cost is an integral part of every construction plan and can affect each party’s contractual obligations. The performance of both time and cost are usually important to the client and contractor during the project. Almost all construction projects are experiencing time overrun. These time overruns always contributed as expensive to both client and contractor. Construction of any project inside the gathering centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. It also involves many agencies interdependent on each other like the vendors, structural and functional designers including various types of specialized engineers and it includes support of contractors and specialized contractors. This paper mainly highlights the types of construction delays due to which project suffer time and cost overrun. This paper also speaks about the delay causes and factors that contribute to the construction sequence delay for the oil and gas projects. Construction delay is supposed to be one of the repeated problems in the construction projects and it has an opposing effect on project success in terms of time, cost and quality. Some effective methods are identified to minimize delays in construction projects such as: 1. Site management and supervision, 2. Effective strategic planning, 3. Clear information and communication channel. Our research paper studies the types of delay with some real examples with statistic results and suggests solutions to overcome this problem.

Keywords: non-compensable delay, delays caused by force majeure, compensable delay, delays caused by the owner or the owner’s representative, non-excusable delay, delay caused by the contractor or the contractor’s representative, concurrent delay, delays resulting from two separate causes at the same time

Procedia PDF Downloads 238
2298 Culturable Diversity of Halophilic Bacteria in Chott Tinsilt, Algeria

Authors: Nesrine Lenchi, Salima Kebbouche-Gana, Laddada Belaid, Mohamed Lamine Khelfaoui, Mohamed Lamine Gana

Abstract:

Saline lakes are extreme hypersaline environments that are considered five to ten times saltier than seawater (150 – 300 g L-1 salt concentration). Hypersaline regions differ from each other in terms of salt concentration, chemical composition and geographical location, which determine the nature of inhabitant microorganisms. In order to explore the diversity of moderate and extreme halophiles Bacteria in Chott Tinsilt (East of Algeria), an isolation program was performed. In the first time, water samples were collected from the saltern during pre-salt harvesting phase. Salinity, pH and temperature of the sampling site were determined in situ. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions. Isolates were obtained by plating out the samples in complex and synthetic media. In this study, seven halophiles cultures of Bacteria were isolated. Isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (oxidase, catalase, nitrate reductase and urease), and optimization of growth conditions were done. The results indicated that the salinity optima varied from 50 to 250 g L-1, whereas the optimum of temperature range from 25°C to 35°C. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. The results showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Idiomarina, Halobacillus Thalassobacillus and Planococcus genera and what may represent a new bacterial genus.

Keywords: bacteria, Chott, halophilic, 16S rRNA

Procedia PDF Downloads 274
2297 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 489
2296 A Cost Effective Approach to Develop Mid-Size Enterprise Software Adopted the Waterfall Model

Authors: Mohammad Nehal Hasnine, Md Kamrul Hasan Chayon, Md Mobasswer Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: end-user application development, enterprise software design, information resource management, usability

Procedia PDF Downloads 430
2295 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging

Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui

Abstract:

Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.

Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture

Procedia PDF Downloads 324