Search results for: zinc metal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2929

Search results for: zinc metal

2509 An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals

Authors: A. Szabó Nagy, J. Szabó, I. Vass

Abstract:

Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples.

Keywords: surface water, sediment, PAH, trace metal

Procedia PDF Downloads 315
2508 Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress

Authors: Shafaqat Ali, Afzal Hussain, Muhammad Rizwan, Longhua Wu

Abstract:

Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils.

Keywords: antioxidants, chromium, zinc-lysine, oxidative stress, photosynthesis, tolerance

Procedia PDF Downloads 194
2507 New Restoration Reagent for Development of Erased Serial Number on Copper Metal Surface

Authors: Lav Kesharwani, Nalini Shankar, A. K. Gupta

Abstract:

A serial number is a unique code assigned for identification of a single unit. Serial number are present on many objects. In an attempt to hide the identity of the numbered item, the numbers are often obliterated or removed by mechanical methods. The present work was carried out with an objective to develop less toxic, less time consuming, more result oriented chemical etching reagent for restoration of serial number on the copper metal plate. Around nine different reagents were prepared using different combination of reagent along with standard reagent and it was applied over 50 erased samples of copper metal and compared it with the standard reagent for restoration of erased marks. After experiment, it was found that the prepared Etching reagent no. 3 (10 g FeCl3 + 20 ml glacial acetic acid + 100 ml distilled H2O) showed the best result for restoration of erased serial number on the copper metal plate .The reagent was also less toxic and less time consuming as compared to standard reagent (19 g FeCl3 + 6 ml cans. HCl + 100 ml distilled H2O).

Keywords: serial number restoration, copper plate, obliteration, chemical method

Procedia PDF Downloads 556
2506 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.

Keywords: genotypes, macronutrients, micronutrient, protein, seeds

Procedia PDF Downloads 254
2505 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 124
2504 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency

Authors: A. G. More

Abstract:

Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.

Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate

Procedia PDF Downloads 135
2503 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
2502 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine

Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan

Abstract:

The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.

Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree

Procedia PDF Downloads 302
2501 A Review of Recent Studies on Advanced Technologies for Water Treatment

Authors: Deniz Sahin

Abstract:

Growing concern for the presence and contamination of heavy metals in our water supplies has steadily increased over the last few years. A number of specialized technologies including precipitation, coagulation/flocculation, ion exchange, cementation, electrochemical operations, have been developed for the removal of heavy metals from wastewater. However, these technologies have many limitations in the application, such as high cost, low separation efficiency, Recently, numerous approaches have been investigated to overcome these difficulties and membrane filtration, advanced oxidation technologies (AOPs), and UV irradiation etc. are sufficiently developed to be considered as alternative treatments. Many factors come into play when selecting wastewater treatment technology, such as type of wastewater, operating conditions, economics etc. This study describes these various treatment technologies employed for heavy metal removal. Advantages and disadvantages of these technologies are also compared to highlight their current limitations and future research needs. For example, we investigated the applicability of the ultrafiltration technology for treating of heavy metal ions (e.g., Cu(II), Pb(II), Cd(II), Zn(II)) from synthetic wastewater solutions. Results shown that complete removal of metal ions, could be achieved.

Keywords: heavy metal, treatment methodologies, water, water treatment

Procedia PDF Downloads 170
2500 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

This study aimed to evaluated the surface water quality for agriculture and consumption in the district. Surface water quality parameters in this study in cluding water temperature, turbidity, conductivity. salinity, pH, dissolved oxygen, BOD, nitrate, Suspended solids, phosphorus. Total dissolve solids, iron, copper, zinc, manganese, lead and cadmium. Water samples were collected from small excavation, Lychee, Pomelo, and Coconut orchard for 3 season during January to December 2011. The surface water quality from small excavation, Lychee, pomelo, and coconut orchard are meet the type III of surface water quality standard issued by the National Environmental Quality Act B. E. 1992. except the concentration of heavy metal. And did not differ significantly at 0.05 level, except dissolved oxygen. The water is suitable for consumption by the usual sterile and generally improving water quality through the process before. And is suitable for agriculture.

Keywords: water quality, surface water quality, Thailand, water

Procedia PDF Downloads 356
2499 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 103
2498 A Preliminary Research on Constituted Rules of Settlement Housing Alterations of Chinese New Village in Malaysia: A Study of Ampang New Village, Selangor

Authors: Song Hung Chi, Lee Chun Benn

Abstract:

Follow by the “A Research on Types of Settlement Housing Alterations of Chinese New Village in Malaysia- A Study in Ampang New Village, Selangor” preliminary informed that the main factors for expansion and enlargement suitably due to the needs of user's life and restoration purpose. The alterations behavior generally derived at the rear position of main house with different types of derivatives, the averages expansion area are not exceeding of 100㎡, while building materials used were wooden, wooden structure, and zinc which are non-permanent building materials. Therefore, a subsequent studies taken in this paper, further to analyze the drawing with summarize method, to explore the derived forms and the constituted rules of housing alterations in Ampang Village, as a more complete presentation of housing alterations in New Village. Firstly, classified the existing housing alterations into three types by using summarize method, which are Type 1, Additional of Prototype House; Type 2, Expansion of Prototype House; and Type 3, Diffusion of Additional. The results shows that the derivative mode of alterations can be divided into the use of "continuous wall" or "non-continuous wall," this will affects the structural systems and roof styles of alterations, and formed the different layers of interior space with "stages" and "continuity". On the aspects of spatial distribution, sacrificial area as a prescriptive function of space, it was mostly remains in the original location which in the center of living area after alterations. It is an important characteristic in a New Village house, reflecting the traditional Ethics of Hakka Chinese communities in the settlement. In addition, wooden as the main building materials of constituted rules for the prototype house, although there were appeared other building materials, such as cement, brick, glass, metal and zinc after alterations, but still mostly as "wooden house" pattern. Result show because of the economy of village does not significantly improve, and also forming the similarity types in alterations and constructions of the additional building with the existing. It did not significantly improve on the quality of living, but only increased the area of usage space.

Keywords: Ampang new village, derived forms, constituted rules, alterations

Procedia PDF Downloads 320
2497 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 150
2496 Effect of Welding Heat Input on Intergranular Corrosion of Inconel 625 Overlay Weld Metal

Authors: Joon-Suk Kim, Hae-Woo Lee

Abstract:

This study discusses the effect of welding heat input on intergranular corrosion of the weld metal of Inconel 625 alloy. A specimen of Inconel 625 with a weld metal that controlled welding heat input was manufactured, and aging heat treatment was conducted to investigate sensitization by chromium carbides. The electrochemical SL and DL EPR experiments, together with the chemical ferric sulfate-sulfuric acid and nitric acid tests, were conducted to determine intergranular corrosion susceptibility between the specimens. In the SL and DL EPR experiments, specimens were stabilized in the weld metal, and therefore intergranular corrosion susceptibility could not be determined. However, in the ferric sulfate-sulfuric acid and nitric acid tests, the corrosion speed increased as heat input increased. This was because the amount of diluted Fe increased as the welding heat input increased, leading to microsegregation between the dendrites, which had a negative effect on the corrosion resistance.

Keywords: Inconel 625, weling, overlay, heat input, intergranular corrosion

Procedia PDF Downloads 357
2495 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 349
2494 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model

Procedia PDF Downloads 286
2493 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 64
2492 Assessment of Heavy Metal Contamination in Ground Water in the Coastal Part of Cauvery Deltaic Region, South India

Authors: Gnanachandrasamy G., Zhou Y., Ramkumar T., Venkatramanan S., Wang S., Mo Liping, Jingru Zhang

Abstract:

In order to assess the heavy metal contamination totally fourty five groundwater samples were collected from the coastal part of Cauvery deltaic region, South India, during monsoon season in the year of 2017. The study area lies between longitudes 79º15’ to 79º 50’ E and latitudes 10º10’ to 11º20’ N with total area of 2,569 km². The concentration of As, Ba, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals ranged between 0.007-117.8 µg/l for As, 8.503-1281 µg/l for Ba, 0.006-0.12 µg/l for Cd, 0.23-5.572µg/l for Cr, 0.44-17.9 µg/l for Co, 0.633-11.56 µg/l for Cu, 0.467-29.34 µg/l for Ni, 0.008-5.756 µg/l for Pb, 0.979 to 45.49 µg/l for Se, and 2.712-10480 µg/l for Zn in the groundwaters. A comparison of heavy metal concentration with WHO and BIS drinking water standards shows that Ni, Zn, As, Se, and Ba level is higher than the drinking water standards in some of the groundwater samples, and the concentrations of all the other heavy metals were lower than the drinking water standards. The present levels of heavy metal concentration in the studied area groundwaters are moderate to severe to public health and environmental concerns and need attention.

Keywords: cauvery delta, drinking water, groundwater, heavy metals

Procedia PDF Downloads 345
2491 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 388
2490 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel

Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana

Abstract:

The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.

Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength

Procedia PDF Downloads 252
2489 Understanding the Utilization of Luffa Cylindrica in the Adsorption of Heavy Metals to Clean Up Wastewater

Authors: Akanimo Emene, Robert Edyvean

Abstract:

In developing countries, a low cost method of wastewater treatment is highly recommended. Adsorption is an efficient and economically viable treatment process for wastewater. The utilisation of this process is based on the understanding of the relationship between the growth environment and the metal capacity of the biomaterial. Luffa cylindrica (LC), a plant material, was used as an adsorbent in adsorption design system of heavy metals. The chemically modified LC was used to adsorb heavy metals ions, lead and cadmium, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion concentration, ionic strength and pH of solution were studied. The chemical nature and surface area of the tissues adsorbing heavy metals in LC biosorption systems were characterised by using electron microscopy and infra-red spectroscopy. It showed an increase in the surface area and improved adhesion capacity after chemical treatment. Metal speciation of the metal ions showed the binary interaction between the ions and the LC surface as the pH increases. Maximum adsorption was shown between pH 5 and pH 6. The ionic strength of the metal ion solution has an effect on the adsorption capacity based on the surface charge and the availability of the adsorption sites on the LC. The nature of the metal-surface complexes formed as a result of the experimental data were analysed with kinetic and isotherm models. The pseudo second order kinetic model and the two-site Langmuir isotherm model showed the best fit. Through the understanding of this process, there will be an opportunity to provide an alternative method for water purification. This will be provide an option, for when expensive water treatment technologies are not viable in developing countries.

Keywords: adsorption, luffa cylindrica, metal-surface complexes, pH

Procedia PDF Downloads 89
2488 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions

Authors: Nisha Dhariwal, Anupama Sharma

Abstract:

The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.

Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization

Procedia PDF Downloads 301
2487 Proximate and Amino Acid Composition of Amaranthus hybridus (Spinach), Celosia argentea (Cock's Comb) and Solanum nigrum (Black nightshade)

Authors: S. O. Oladeji, I. Saleh, A. U. Adamu, S. A. Fowotade

Abstract:

The proximate composition, trace metal level and amino acid composition of Amaranthus hybridus, Celosia argentea and Solanum nigrum were determined. These vegetables were high in their ash contents. Twelve elements were determined: calcium, chromium, copper, iron, lead, magnesium, nickel, phosphorous, potassium, sodium and zinc using flame photometer, atomic absorption and UV-Visible spectrophotometers. Calcium levels were highest ranged between 145.28±0.38 to 235.62±0.41mg/100g in all the samples followed by phosphorus. Quantitative chromatographic analysis of the vegetables hydrolysates revealed seventeen amino acids with concentration of leucine (6.51 to 6.66±0.21g/16gN) doubling that of isoleucine (2.99 to 3.33±0.21g/16gN) in all the samples while the limiting amino acids were cystine and methionine. The result showed that these vegetables were of high nutritive values and could be adequate used as supplement in diet.

Keywords: proximate, amino acids, Amaranthus hybridus, Celosia argentea, Solanum nigrum

Procedia PDF Downloads 400
2486 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field

Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin

Abstract:

The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.

Keywords: rice field rat, Rattus argentiventer, fence, rice

Procedia PDF Downloads 40
2485 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)

Procedia PDF Downloads 426
2484 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 87
2483 Synthesis and Properties of Nanosized Mixed Oxide Systems for Environmental Protection

Authors: I. Yordanova, H. Kolev, S. Todorova, Z. Cherkezova-Zheleva

Abstract:

Catalysis plays a key role in solving many environmental problems by establishing efficient catalytic systems for environmental protection and reducing emissions of greenhouse gases from industry. Volatile organic compounds are major air pollutants. There are several ways to dispose of emissions like - adsorption, condensation, absorption, bio-filtration, thermal, catalytic, plasma and ultraviolet oxidation. The catalytic oxidation has more advantages over other methods. For example - lower energy consumption; the concentration of the organic contaminant may be low or may vary within wide limits. Catalysts for complete oxidation of VOCs can be classified into three categories: noble metal, metal oxides or supported metal oxides and mixture of noble metals and metal oxides. Most of the catalysts for the complete catalytic oxidation are based on Pt, Pd, Rh or a combination thereof. The oxides of the transition metal are one of the alternatives to noble metal catalysts for these reactions. They are less active at low temperatures, but at higher - their activity is similar. The properties of the catalyst depend on the distribution of the active phase, the medium type of the pre-treatment, the interaction between the active phase and the support and the interaction between the active phase and the reaction medium. Supported mono-component Mn and bi-component Mn-Co systems are examined in present study. The samples are prepared using co-precipitation method. SiO2 (Aerosil) is used as a support. The studied samples were precipitated by NH4OH. The synthesized samples were characterized by XRD, XPS, TPR and tested in the catalytic reaction of complete oxidation of n-hexane, propane, methanol, ethanol and propanol.

Keywords: catalytic oxidation, Co-Mn oxide, oxidation of hydrocarbons and alcohols, environmental protection

Procedia PDF Downloads 387
2482 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR

Authors: S. Vasailor, C. Rattanakawin

Abstract:

Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.

Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning

Procedia PDF Downloads 138
2481 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction

Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha

Abstract:

Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.

Keywords: copper slag, Jarofix waste, material, road construction

Procedia PDF Downloads 446
2480 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students

Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee

Abstract:

Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.

Keywords: hands-on activity, STEM education, computer programming, metal work

Procedia PDF Downloads 465