Search results for: tissue damage
3418 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 3603417 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels
Authors: Naresh Reddy Kolanu
Abstract:
The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model
Procedia PDF Downloads 423416 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites
Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt
Abstract:
In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162
Procedia PDF Downloads 1063415 Clinicopathological and Immunohistochemical Study of Ovarian Sex Cord-Stromal Tumors and Their Histological Mimics
Authors: Ghada Esheba, Ebtisam Aljerayan, Afnan Al-Ghamdi, Atheer Alsharif, Hanan alzahrani
Abstract:
Background: Primary ovarian neoplasms comprise a heterogeneous group of tumors of three main subtypes: surface epithelial, germ cell, and sex cord-stromal. The wide morphological variation within and between these groups can result in diagnostic difficulties. Gonadal sex cord-stromal tumors (SCST) represent one of the most heterogeneous categories of human neoplasms, because they may contain various combinations of different gonadal sex cord and stromal element. Aim: The aim of this work is to highlight the clinicopathological characteristics of SCST and to assess the value of alpha-inhibin and calretinin in the distinction between SCST and their mimics. Material and methods: This study was carried out on 100 cases using full tissue sections; 70 cases were SCST and 30 cases were histological mimics of SCST. The cases were studied using immunohistochemically using alpha-inhibin. In addition, an ovarian tissue microarray containing 170 benign and malignant ovarian neoplasms was also studied immunohistochemically for calretinin expression. The ovarian microarray included 14 SCST, 59 ovarian serous borderline tumors, 17 mucinous borderline tumors, 10 mucinous adenocarcinomas, 32 endometrioid adenocarcinomas, 34 clear cell carcinomas, and 4 germ cell tumors. Results: 99% of SCST examined using full tissue sections exhibited positive cytoplasmic staining for inhibin. On the contrary, only 7% of the histological mimics (P value < 0.0001). 86% of SCST in the tissue microarray were positive for calretinin with nuclear and/or cytoplasmic staining compared to only 7% of the other tumor types (P value < 0.0001). Conclusions: SCST have characteristic clinicopathological and immunohistochemical features and their recognition is crucial for proper diagnosis and treatment. Alpha-inhibin and calretinin are of great help in the diagnosis of sex cord-stromal tumors.Keywords: calretinin, granulosa cell tumor, inhibin, sex cord-stromal tumors
Procedia PDF Downloads 2063414 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge
Procedia PDF Downloads 1603413 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice
Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo
Abstract:
Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress
Procedia PDF Downloads 3863412 Granulomatous Mycoses Fungoides: A Case Report
Authors: Girum Tedla Assefa
Abstract:
Background: Granulomatous mycosis fungoides is an extremely rare type of cutaneous T-cell lymphoma (<55 cases reported worldwide). Case report: A 36-year-old female presented with soft tissue atrophy of right lower limb (dermis + hypodermis) of 22 years and plaques over trunk of 3 years duration. Histological examination of a biopsy taken from the atrophied tissue showed a granulomatous reaction with epidermotropic atypical lymphocytes. However, in other areas there were only findings of conventional MF without granuloma. Conclusion: The diagnosis of a granulomatous mycosis fungoides depends exclusively on the histological demonstration of granulomas. Distinct clinical characteristics are not present. This case highlights the importance of thorough investigation of lipoatrophic skin changes in the adult to exclude underlying causes, including MF.Keywords: cutaneous lymphoma, granulomatous skin lymphoma, mycoses fungoides, skin atrophy
Procedia PDF Downloads 3713411 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 683410 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites
Authors: S. D. El Wakil, M. Pladsen
Abstract:
Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.Keywords: drilling of composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites
Procedia PDF Downloads 3893409 Inflammatory Changes Caused by Lipopolysaccharide in Odontoblasts
Authors: Virve Pääkkönen, Heidi M. Cuffaro, Leo Tjäderhane
Abstract:
Objectives: Odontoblasts are the outermost cell layer of dental pulp and form the dentin. Importance of bacterial products, e.g. lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria and lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, have been indicated in the pathogenesis of pulpitis. Gram-positive bacteria are more prevalent in superficial carious lesion while the amount gram-negative is higher in the deep lesions. Objective of this study was to investigate the effect of these bacterial products on inflammatory response of pulp tissue. Interleukins (IL) were of special interest. Various ILs have been observed in the dentin-pulp complex of carious tooth in vivo. Methods: Tissue culture method was used for testing the effect of LTA and LPS on human odontoblasts. Enzymatic isolation technique was used to extract living odontoblasts for cell cultures. DNA microarray and quantitative PCR (qPCR) were used to characterize the changes in the expression profile of the tissue cultured odontoblasts. Laser microdissection was used to cut healthy and affected dentin and odontoblast layer directly under carious lesion for experiments. Cytokine array detecting 80 inflammatory cytokines was used to analyze the protein content of conditioned culture media as well as dentin and odontoblasts from the carious teeth. Results: LPS caused increased gene expression IL-1α, and -8 and decrease of IL-1β, 12 , -15 and -16 after 1h treatment, while after 24h treatment decrease of IL-8, -11 and 23 mRNAs was observed. LTA treatment caused cell death in the tissue cultured odontoblasts but in in the cell culture but not in cell culture. Cytokine array revealed at least 2-fold down-regulation of IL-1β, -10 and -12 in response to LPS treatment. Cytokine array of odontoblasts of carious teeth, as well as LPS-treated tissue-cultured odontoblasts, revealed increased protein amounts of IL-16, epidermal growth factor (EGF), angiogenin and IGFBP-1 as well as decreased amount of fractalkine. In carious dentin, increased amount of IL-1β, EGF and fractalkine was observed, as well as decreased level of GRO-1 and HGF. Conclusion: LPS caused marked changes in the expression of inflammatory cytokines in odontoblasts. Similar changes were observed in the odontoblasts cut directly under the carious lesion. These results help to shed light on the inflammatory processes happening during caries.Keywords: inflammation, interleukin, lipoteichoic acid, odontoblasts
Procedia PDF Downloads 2113408 L-Carnitine Supplementation and Exercise-Induced Muscle Damage
Authors: B. Nakhostin-Roohi, F. Khoshkhahesh, KH. Parandak, R. Ramazanzadeh
Abstract:
Introduction: The protective effect of antioxidants in diminishing the post-exercise rise of serum CK and LDH in individuals trained for competitive sports has come to light in recent years. This study was conducted to assess the effect of Two-week L-carnitine supplementation on exercise-induced muscle damage, as well as antioxidant capacity after a bout of strenuous exercise in active healthy young men. Methodology: Twenty active healthy men volunteered for this study. Participants were randomized in a double-blind placebo-controlled fashion into two groups: L-carnitine (C group; n = 10) and placebo group (P group; n = 10). The participants took supplementation (2000 mg L-carnitine) or placebo (2000 mg lactose) daily for 2weeks before the main trial. Then, participants ran 14 km. Blood samples were taken before supplementation, before exercise, immediately, 2h and 24h after exercise. Creatine kinase (CK), and lactate dehydrogenase (LDH), and total antioxidant capacity (TAC) were measured. Results: Serum CK and LDH significantly increased after exercise in both groups (p < 0.05). Serum LDH was significantly lower in C group than P group 2h and 24h after exercise (p < 0.05). Furthermore, CK was significantly lower in C group compared with P group just 24h after exercise (p < 0.05). Plasma TAC increased significantly 14 days after supplementation and 24h after exercise in C group compared with P group (p < 0.05). Discussion and conclusion: These results suggest two-week daily oral supplementation of L-carnitine has been able to promote antioxidant capacity before and after exercise and decrease muscle damage markers through possibly inhibition of exercise-induced oxidative stress.Keywords: L-carnitine, muscle damage, creatine kinase, Lactate dehydrogenase
Procedia PDF Downloads 4403407 Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters
Authors: Piotr Synaszko, Michał Sałaciński, Andrzej Leski
Abstract:
This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence.Keywords: disbonds, environmental effect, helicopter rotor blades, service life extension
Procedia PDF Downloads 3113406 Piezosurgery in Periodontics and Oral Implantology
Authors: Neelesh Papineni
Abstract:
Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.Keywords: piezo-electric, osteotomy, osteoplasty, implantology
Procedia PDF Downloads 3723405 Synthesis of Tricalcium Phosphate Substituted with Magnesium Ions for Bone Regeneration
Authors: Andreia Cucuruz, Cristina Daniela Ghitulica, Georgeta Voicu, Cristina Busuioc
Abstract:
Ceramics based on calcium phosphates have lately increased attention for tissue engineering because they can be used as substitute bones or for bone regeneration since they mimic very well the nanostructure of tough bone tissue, but also because of other advantages such as a very good biocompatibility and osseointegration. This study aims the preparation and characterization of ceramic materials on the basis of TCP (Ca₃(PO₄)₂), within which calcium ions are substituted by magnesium ions (Mg²⁺) in order to improve the regenerative properties of these materials. TCP-Mg material was synthesized by chemical precipitation method using calcium oxide (CaO) and phosphoric acid (H₃PO₄) as precursors. The objective was to obtain powders with different concentrations of Mg in order to analyze the effect of magnesium ions on the physicochemical properties of phosphate ceramics and in vitro degradation in simulated biological fluid (SBF). Ceramic powders were characterized in vitro but also from the compositional and microstructural point of view. TCP_Mg powders were prepared through wet chemical method from calcium oxide (CaO), magnesium oxide nanopowder (MgO < 50 nm particle size (BET) Sigma Aldrich), phosphoric acid (H₃PO₄ - 85 wt.% in H₂O, 99.99% trace metals basis - Sigma Aldrich). In order to determine the quantities of raw materials, calculations were performed to obtain HAp with Ca/P ratio of 1.5.Keywords: bone regeneration, magnesium substitution, tricalcium phosphate, tissue engineering
Procedia PDF Downloads 3463404 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4883403 Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T
Authors: Sultan Z. Mahmud, Emily C. Graff, Adil Bashir
Abstract:
Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment.Keywords: BBB, cat brain, magnetization transfer, PEA-15
Procedia PDF Downloads 1433402 Savi Scout versus Wire-Guided Localization in Non-palpable Breast Lesions – Comparison of Breast Tissue Volume and Weight and Excision Safety Margin
Authors: Walid Ibrahim, Abdul Kasem, Sudeendra Doddi, Ilaria Giono, Tareq Sabagh, Muhammad Ammar, Nermin Osman
Abstract:
Background: wire-guided localization (WL) is the most widely used method for the localization of non-palpable breast lesions. SAVI SCOUT occult lesion localization (SSL) is a new technique in breast-conservative surgery. SSL has the potential benefit of improving radiology workflow as well as accurate localization. Purpose: The purpose of this study is to compare the breast tissue specimen volume and weight and margin excision between WL and SSL. Materials and methods: A single institution retrospective analysis of 377 female patients who underwent wide local breast excision with SAVI SCOUT and or wire-guided technique between 2018 and 2021 in a UK University teaching hospital. Breast department. Breast tissue specimen volume and weight, and margin excision have been evaluated in the three groups of different localization. Results: Three hundred and seventy-seven patients were studied. Of these, 261 had wire localization, 88 had SCOUT and 28 had dual localization techniques. Tumor size ranged from 1 to 75mm (Median 20mm). The pathology specimen weight ranged from 1 to 466gm (Median 46.8) and the volume ranged from 1.305 to 1560cm³ (Median 106.32 cm³). SCOUT localization was associated with a significantly low specimen weight than wire or the dual technique localization (Median 41gm vs 47.3gm and 47gm, p = 0.029). SCOUT was not associated with better specimen volume with a borderline significance in comparison to wire and combined techniques (Median 108cm³ vs 105cm³ and 105cm³, p = 0.047). There was a significant correlation between tumor size and pathology specimen weight in the three groups. SCOUT showed a better >2mm safety margin in comparison to the other 2 techniques (p = 0.031). Conclusion: Preoperative SCOUT localization is associated with better specimen weight and better specimen margin. SCOUT did not show any benefits in terms of specimen volume which may be due to difficulty in getting the accurate specimen volume due to the irregularity of the soft tissue specimen.Keywords: scout, wire, localization, breast
Procedia PDF Downloads 1103401 Optimal Load Factors for Seismic Design of Buildings
Authors: Juan Bojórquez, Sonia E. Ruiz, Edén Bojórquez, David de León Escobedo
Abstract:
A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied.Keywords: load factors, life-cycle analysis, seismic design, reinforced concrete buildings
Procedia PDF Downloads 6173400 Developing Motorized Spectroscopy System for Tissue Scanning
Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken
Abstract:
The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning
Procedia PDF Downloads 1913399 Reconstructing Calvarial Bone Lesions Using PHBV Scaffolds and Cord Blood Mesenchymal Stem Cells in Rat
Authors: Hamed Hosseinkazemi, Esmaeil Biazar
Abstract:
For tissue engineering of bone, anatomical and operational reconstructions of damaged tissue seem to be vital. This is done via reconstruction of bone and appropriate biological joint with bone tissues of damaged areas. In this study the condition of biodegradable bed Nanofibrous PHBV and USSC cells were used to accelerate bone repair of damaged area. Hollow nanofabrication scaffold of damageable life was designed as PHBV by electrospinning and via determining the best factors such as the kind and amount of solvent, specific volume and rate. The separation of osseous tissue infiltration and evaluating its nature by flow cytometrocical analysis was done. Animal test including USSC as well as PHBV condition in the damaged bone was done in the rat. After 8 weeks the implanted area was analyzed using CT scan and was sent to histopathology ward. Finally, the rate and quality of reconstruction were determined after H and E coloring. Histomorphic analysis indicated a statistically significant difference between the experimental group of PHBV, USSC+PHBV and control group. Besides, the histopathologic analysis showed that bone reconstruction rate was high in the area containing USSC and PHBV, compared with area having PHBV and control group and consequently the reconstruction quality of bones and the relationship between the new bone tissues and surrounding bone tissues were high too. Using PHBR scaffold and USSC together could be useful in the amending of wide range of bone lesion.Keywords: bone lesion, nanofibrous PHBV, stem cells, umbilical cord blood
Procedia PDF Downloads 3173398 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering
Authors: Amin Jabbari
Abstract:
The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.Keywords: AM, 3D printed implants, bioceramic, tissue engineering
Procedia PDF Downloads 663397 Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete
Authors: Hasan Taherkhani
Abstract:
The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content.Keywords: asphalt concrete, moisture damage, nylon fiber, tensile strength,
Procedia PDF Downloads 4083396 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses
Authors: Seung-Won Lee, JongSoo Lee, Won-Jik Yang, Hyung-Joon Kim
Abstract:
A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.Keywords: seismic fragility curve, incremental dynamic analysis, capacity spectrum method, reinforced concrete moment frame
Procedia PDF Downloads 4223395 Effects of Pharmaceutical Drugs on Fish (koi) Behaviour and Muscle Function
Authors: Gayathri Vijayakumar, Preethi Baskaran
Abstract:
The effluents that are let down by the industries mix with the water bodies and drastically affect the aquatic life, which leads to pollution and bio magnifications. Effluents mostly contain chemicals, heavy metals etc., and cause toxicity to the environment. The pharmaceutical industries too contribute. The by-products and other unwanted waste are discharged without any treatment; these causes DNA damage and affect behavior of aquatic life. The study was conducted on koi carp (Cyprinus carpio) the ornamental variety of common carp. A two week long study was conducted on them using common anti-depressant drug (Diazepam) in various concentrations. These drugs are known to cause behavioral damage and organ malfunctions (muscle twitch). The histopathological study conducted showed permanent muscle twitching and lesions in the fish samples studied. The sociability was also affected in the span of 14 days. Higher concentrations of this drug showed severe damage in the muscle structures. Thus, this drug can cause adverse effects on marine ecosystem and eventually cause bio magnification of drug by running through the food chain.Keywords: pollution, toxicity, bio-magnifications, koi carp, muscle twitch, diazepam, histopathology
Procedia PDF Downloads 1003394 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 1603393 Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue
Authors: Gema Gómez-Casado, Alba Rodríguez-Muñoz, Virginia Mela-Rivas, Pallavi Kompella, Francisco José Tinahones-Madueña, Isabel Moreno-Indias, Almudena Ortega-Gómez
Abstract:
Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet.Keywords: obesity, nutrition, Mediterranean diet, gut microbiota, immune system
Procedia PDF Downloads 1273392 Hypoxia Tolerance, Longevity and Cancer-Resistance in the Mole Rat Spalax – a Liver Transcriptomics Approach
Authors: Hanno Schmidt, Assaf Malik, Anne Bicker, Gesa Poetzsch, Aaron Avivi, Imad Shams, Thomas Hankeln
Abstract:
The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxiasensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.Keywords: cancer, hypoxia, longevity, transcriptomics
Procedia PDF Downloads 1573391 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker
Authors: Emma K. Sales, Nilda G. Butardo
Abstract:
The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D
Procedia PDF Downloads 3013390 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing
Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin
Abstract:
Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network
Procedia PDF Downloads 803389 Gingival Tissue Appearance Changes According Hormonal Oscillations at Female Patients
Authors: Ilma Robo, Saimir Heta, Vera Ostreni, Elsaida Agrushi, Eduart Kapaj
Abstract:
Introduction: Cyclic hormonal fluctuations are known from literature to have a clinically visible effects on gingival tissue reactions, to the diagnosed processes of gingival inflammation. Materials and methods: At a total of 47 female patients, ad-hock presented at the University Clinic, were recorded data on effect of hormonal oscillations at periodontal treatment protocol. Oral examination was performed on soft tissue of gingiva and the oral mucous membrane, always respecting the air-drying procedure and then checking with free eye differences in oral mucosal relief. After the patients were informed about the study protocol, the purpose of the study and the ongoing procedure, verbal consensus was required. Results: The study was conducted in a total of 47 patients, out of which 13 patients were under the gingivitis classification, and 24 patients under the periodontal classification. Patients included in the study are divided by age, cycle week respectively 1,2,3 and 4.The younger age of female patients is more prone to the appearance of gingivitis, which is further aggravated by the effects of sexual hormones and the effect of the controlled or non-regulated fluctuations of the latter. Conclusions: The healing process is more fuel-intensive in the absence of high hormone levels, as they are these pro-inflammatory hormones, both in or near the ho Younger women are more open to volunteering in studies that record individual and study data that may last in time.Keywords: gingiva, hormonal oscillations, female patients, mucosa, periodontal non-surgical treatment
Procedia PDF Downloads 81