Search results for: sustainable water management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19983

Search results for: sustainable water management

19563 Impact of Agricultural Waste Utilization and Management on the Environment

Authors: Ravi Kumar

Abstract:

Agricultural wastes are the non-product outcomes of agricultural processing whose monetary value is less as compared to its collection cost, transportation, and processing. When such agricultural waste is not properly disposed of, it may damage the natural environment and cause detrimental pollution in the atmosphere. Agricultural development and intensive farming methods usually result in wastes that remarkably affect the rural environments in particular and the global environment in general. Agricultural waste has toxicity latent to human beings, animals, and plants through various indirect and direct outlets. The present paper explores the various activities that result in agricultural waste and the routes that can utilize the agricultural waste in a manageable manner to reduce its adverse impact on the environment. Presently, the agricultural waste management system for ecological agriculture and sustainable development has emerged as a crucial issue for policymakers. There is an urgent need to consider agricultural wastes as prospective resources rather than undesirable in order to avoid the transmission and contamination of water, land, and air resources. Waste management includes the disposal and treatment of waste with a view to eliminate threats of waste by modifying the waste to condense the microbial load. The study concludes that proper waste utilization and management will facilitate the purification and development of the ecosystem and provide feasible biofuel resources. This proper utilization and management of these wastes for agricultural production may reduce their accumulation and further reduce environmental pollution by improving environmental health.

Keywords: agricultural waste, utilization, management, environment, health

Procedia PDF Downloads 96
19562 Mapping New Technologies for Sustainability along the Fashion Supply Chain

Authors: Hilde Heim

Abstract:

The textile industry is known for its swift adoption of innovations in fashion technology (Fash-Tech). The industry is also known for its harmful effects on the environment. Opportunely, Fash-Tech is expected to facilitate the turn towards more sustainable practice. However, although several technologies have the potential for advancing sustainable practice, many industry players, whether large or small, are confused and misinformed about Fash-Tech adoption, application, and impact. Through a visual poster presentation, this project aims to map global fashion innovations along the supply chain from fibre production to waste management, thus providing a clearer picture of numbers, scale, and adoption. While the project aims to identify Fash-Tech effectiveness in reaching sustainability goals, it also identifies areas of congestion as well as insufficiency in the accessibility of Fash-Tech. This project intends to help inform future decisions in business, investment, and policy for the advancement of sustainable practice.

Keywords: fashion technology, sustainability, supply chain, enterprise management

Procedia PDF Downloads 242
19561 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Keywords: drivers, decision making trial and evaluation laboratory (DEMATEL), India, sustainable manufacturing

Procedia PDF Downloads 389
19560 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 353
19559 Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas

Authors: Alireza Nejadmohammad Namaghi

Abstract:

Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.

Keywords: mulch, cotton, arid land management, irrigation systems

Procedia PDF Downloads 87
19558 Key Challenges Facing the Management of Archaeological and Tourism Sites in Jordan

Authors: Muna Slehat

Abstract:

Jordan is endowed with over 14,500 productive archaeological sites and also a wealth of heritage sites that need to be protected from the pressing threat of destruction and damage. Archaeological sites in Jordan face significant threats, including insensitive development, urbanization, pollution, tourism, and vandalism, therefore an effective management plan is a key element, not only for the conservation of this heritage, but also to address issues such as tourism and sustainable development. This study highlights the obstacles that confront the management of the archaeological and tourism sites in Jordan, prior to and after the launch of the Strategies for Management of Jordan’s Archaeological Heritage by the Department of Antiquities (DoA) 2007-2010 and 2014-2018, as well as the establishment of the Directorate of the Management of Archaeological Sites in 2010, and instructions for the proper use of tourism sites, 2014, by the Ministry of Tourism and Antiquities (MoTA). The study has revealed that the management of the archaeological and tourism sites under the pretext of improvement of services for tourists and visitors to Jordan would allow access to so-called polarization tourism and facilitate tourism development that would be sustainable economically and provide attractive returns. The data required have been collected through conducting interviews with 18 specialists. The main findings of the study are that management is new in Jordan, and has become a vital and dynamic force in Jordan after 2000 but that there have also been many mistakes, with sustainability of the sites being ignored and a lack of awareness among local communities surrounding these sites. Management of the sites has also suffered from a lack of organizational vision, with no instructions for practical application and no legislative provisions which cater for the efficient management of the sites. All of this needs to be amended to remove gaps, overlaps and ambiguities, so that the authorities responsible for the rehabilitation and promotion, development and management of these sites can overcome the problems, such as lack of human resources (specialists) and financial resources.

Keywords: Jordan, management, archaeological sites, tourism, challenges

Procedia PDF Downloads 312
19557 Preliminary Study on Chinese Traditional Garden Making Based on Water Storage Projects

Authors: Liu Fangxin, Zhao Jijun

Abstract:

Nowadays, China and the world are facing the same problems of flooding, city waterlogging and other environment issues. Throughout history, China had many excellent experiences dealing with the flood, and can be used as a significant reference for contemporary urban construction. In view of this, the research used the method of literature analysis to find out the main water storage measures in ancient cities, including reservoir storage and pond water storage. And it used the case study method to introduce the historical evolution, engineering measures and landscape design of 4 typical ancient Chinese cities in details. Then we found the pond and the reservoir were the main infrastructures for the ancient Chinese city to avoid the waterlogging and flood. At last this paper summed up the historical experience of Chinese traditional water storage and made conclusions that the establishment of a reasonable green water storage facilities could be used to solve today's rain and flood problems, and hoped to give some enlightenment of stormwater management to our modern city.

Keywords: ancient Chinese cities, water storage project, Chinese classical gardening, stormwater management, green facilities

Procedia PDF Downloads 337
19556 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures

Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia

Abstract:

Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.

Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst

Procedia PDF Downloads 57
19555 Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms

Authors: Lusine Tadevosyan, Natella Mirzoyan, Anna Yeritsyan, Narek Avetisyan

Abstract:

Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented.

Keywords: aquaculture, groundwater, recirculation, sustainability

Procedia PDF Downloads 270
19554 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques

Authors: Koray Altintas, Ozalp Vayvay

Abstract:

Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.

Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions

Procedia PDF Downloads 333
19553 Addressing the Water Shortage in Beijing: Increasing Water Use Efficiency in Domestic Sector

Authors: Chenhong Peng

Abstract:

Beijing, the capital city of China, is running out of water. The water resource per capita in Beijing is only 106 cubic meter, accounts for 5% of the country’s average level and less than 2% of the world average level. The tension between water supply and demand is extremely serious. For one hand, the surface and ground water have been over-exploited during the last decades; for the other hand, water demand keep increasing as the result of population and economic growth. There is a massive gap between water supply and demand. This paper will focus on addressing the water shortage in Beijing city by increasing water use efficiency in domestic sector. First, we will emphasize on the changing structure of water supply and demand in Beijing under the economic development and restructure during the last decade. Second, by analyzing the water use efficiency in agriculture, industry and domestic sectors in Beijing, we identify that the key determinant for addressing the water crisis is to increase the water use efficiency in domestic sector. Third, this article will explore the two primary causes for the water use inefficiency in Beijing: The ineffective water pricing policy and the poor water education and communication policy. Finally, policy recommendation will offered to improve the water use efficiency in domestic sector by making and implementing an effective water pricing policy and people-engaged water education and communication policy.

Keywords: Beijing, water use efficiency, domestic sector, water pricing policy, water education policy

Procedia PDF Downloads 542
19552 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 72
19551 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 70
19550 Impacts of Environmental Science in Biodiversity Conservation

Authors: S. O. Ekpo

Abstract:

Environmental science deals with everyday challenges such as a cell for call for good and safe quality air, water, food and healthy leaving condition which include destruction of biodiversity and how to conserve these natural resources for sustainable development. Biodiversity or species richness is the sum of all the different species of animals, plants, fungi and microorganisms leaving on earth and variety of habitats in which they leave. Human beings leave on plants and animals on daily basis for food, clothing, medicine, housing, research and trade or commerce; besides this, biodiversity serves to purify the air, water and land of contaminant, and recycle useful materials for continual use of man. However, man continual incessant exploitation and exploration has affected biodiversity negatively in many ways such habitant fragmentation and destruction, introduction of invasive species, pollution, overharvesting, prediction and pest control amongst others. Measures such as recycling material, establishing natural parks, sperm bank, limiting the exploitation of renewable resources to sustainable yield and urban and industrial development as well as prohibiting hunting endangered species and release of non native live forms into an area will go a long way towards conserving biodiversity for continues profitable yield.

Keywords: biodiversity, conservation, exploitation and exploration sustainable yield, recycling of materials

Procedia PDF Downloads 224
19549 Project Stakeholders' Perceptions of Sustainability: A Case Example From the Turkish Construction Industry

Authors: F. Heyecan Giritli, Gizem Akgül

Abstract:

Because of the raising population of world; the need for houses, buildings and infrastructures are increasing rapidly. Energy and water consumption, waste production continues to increase. If this situation of resources continues, there will be a significant loss for next generations. Therefore, there are a lot of researches and solutions developed in the world. Also sustainability criteria are collected together by some countries to serve construction industry with certification systems. Sustainable building production process’s scope requires different path from traditional building production process. Moreover, the key objective of sustainable buildings is that the process includes whole life cycle duration. The process approaches from the decision of the project to the end of it; so the project team is needed from the beginning of the integrated project delivery model. Further more, by defining project team at the beginning of the project provides communication among the team members and defined problem solving and decision making methods. In this research includes the certification systems among the world to comprehend the head lines and assessment criteria. Therefore, it is understand that usually all green building criteria have the same contents. The aim of this research is to assess the sustainable project stakeholder’ perceptions in Turkish construction industry from the point of occupation, job title and years of experience. Therefore, a survey is made to assess the perceptions of each attendant. In Turkey, sustainability criteria are not clearly defined; on the other hand some regulations like waste management, energy efficiency are made by legal agencies. LEED certification system is the most popular system in Turkey that has attended and certificated. From the LEED official data, it’s understood that 308 project registered in Turkey. Therefore, LEED sustainability criteria are used in the survey. Head lines of LEED certification criteria; sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality, innovation and regional priority are indicated to assess the perceptions of survey participants. Moreover, only surveying of criteria are not enough; so the equipment, methods, risks and benefits also considered.

Keywords: LEED, sustainability, perceptions, stakeholders, construction, Turkey, risk, benefit

Procedia PDF Downloads 303
19548 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 406
19547 Water Management in Rice Plants of Dry Season in the Rainfed Lowland

Authors: Zainal Arifin, Mohammad Saeri

Abstract:

The purpose of this study is to determine the efficiency of irrigation use on the growth and yield of two varieties of rice. Water management research on rainfed lowland rice was carried out in dry season (DS I) 2016 in an area of 10,000 m2 in Bunbarat Village, Rubaru Subdistrict, Sumenep Regency. The research was randomized block design factorial with 8 treatments and repeated 3 times, ie Factor I (varieties): (a) Inpago 9, and (b) Sidenuk; factor II (irrigation): (a) Alternate Wetting and Drying, (b) intermittent, (c) submerged, and (d) inundated. The results showed that dominant weed species such as purslane (Portulaca oleraceae L.) and barnyard grass (Echinochloa crusgalli) were mostly found in rice cultivation with Alternate Wetting and Drying, intermittent and submerged irrigation treatment, while the lowest was inundated irrigation. The use of Sidenuk variety with Alternate Wetting and Drying irrigation yielded 5.7 t/ha dry grain harvest (dgh) and was not significantly different from the inundated watering using the Sidenuk variety (6.2 t/ha dgh). With Alternate Wetting and Drying irrigation technique, water use is more efficient as much as 1,503 m3/ha so as to produce 1 kg of grain, it needs 459 liters of water compared to inundated irrigation (665 liters/kg of grain). Results of analysis of rice farming Sidenuk variety with Alternate Wetting and Drying irrigation has the highest B/C ratio (2.56) so that economically feasible.

Keywords: water management, varieties, rice, dry season, rainfed lowland

Procedia PDF Downloads 176
19546 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins

Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier

Abstract:

Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.

Keywords: environmental sustainability, optimization, real time control, storm water management

Procedia PDF Downloads 179
19545 Water's Role in Creating a Sense of Belonging

Authors: Narges Nejati

Abstract:

Nowadays as science hasten toward technology, only quantity of construction noticed and there is a little attention toward quality of construction and there is no usage for element which was prevalent in traditional architecture. This is the cause of this issue that nowadays we see building that most of them just keep you from heat and cold of outside environment and there is no trace of any culture of their country or nation in it. And although we know that man is a creature that adores beauty by his nature, but this spiritual need of him is ignored. And designers by taking an enormous price instead of planning (spiritual designing) to release peace, they attend to planning which make a human soul bothered and ill. The present research is trying to illustrate price of concepts and principles of water usage as one of the elements of nature and also shows the water application in some of the Iranian constructions and the results show the motif of using water in constructions and also some benefits of using it in constructions. And also this matter can causes a reconnection between nature and constructing of a beautiful environment which is consonant and proportional with man’ physical, spiritual and cultural needs. And causes peace and comfort of men. A construction which man feels a friendly atmosphere in them which he has a sense of belonging to them not a construction which arouses feeling of weariness and fatigue.

Keywords: water usage, belonging, sustainable architecture, urban design

Procedia PDF Downloads 386
19544 Environmental Quality On-Line Monitoring Based on Enterprises Resource Planning on Implementation ISO 14001:2004

Authors: Ahmad Badawi Saluy

Abstract:

This study aims to develop strategies for the prevention or elimination of environmental pollution as well as changes in external variables of the environment in order to implement the environmental management system ISO 14001:2004 by integrating analysis of environmental issues data, RKL-RPL transactional data and regulation as part of ERP on the management dashboard. This research uses a quantitative descriptive approach with analysis method comparing with air quality standard (PP 42/1999, LH 21/2008), water quality standard (permenkes RI 416/1990, KepmenLH 51/2004, kepmenLH 55/2013 ), and biodiversity indicators. Based on the research, the parameters of RPL monitoring have been identified, among others, the quality of emission air (SO₂, NO₂, dust, particulate) due to the influence of fuel quality, combustion performance in a combustor and the effect of development change around the generating area. While in water quality (TSS, TDS) there was an increase due to the flow of water in the cooling intake carrying sedimentation from the flow of Banjir Kanal Timur. Including compliance with the ISO 14001:2004 clause on application design significantly contributes to the improvement of the quality of power plant management.

Keywords: environmental management systems, power plant management, regulatory compliance , enterprises resource planning

Procedia PDF Downloads 179
19543 The Risk Assessments of Water Quality in Selected White Water River in Malaysia

Authors: Jaffry Zakaria, Nor Azlina Hasbullah

Abstract:

The research on water quality based on 'Water Quality Index' (WQI) has been on the run along Kampar River in Perak State of Malaysia. This study was conducted to achieve several key objective that determe the value of the parameters that were studied based on Water Quality Index (WQI). The parameters include Dissolved Oxygen (DO), pH, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Suspended Solids. In this study, three sampling stations were selected. Through observations from the researchers, several pollutions were found occurring along the research area such as the disposal of waste water directly without treatment from villagers, widespread dumping of solid waste and the development of the surrounding areas that contributed to the pollution of Sungai Kampar in Perak, Malaysia. Sungai Kampar is commonly used for water recreational activities as well as for bathing purposes. Results showed that Sungai Kampar is classified under category III. According to Interim National Water Quality Standard for Malaysia (INWQS), rivers in the third grade are clean but not suitable for river recreational activities. Therefore, there is a requirement to investigate and analysis the water quality of all white water rivers in Malaysia focusing on the area of water activities. The combination of technology and risk management based on risk assessments can help the recreational industry to survive in future.

Keywords: risk assessments, White Water River, water quality index (WQI), Interim National Water Quality Standard for Malaysia (INWQS)

Procedia PDF Downloads 351
19542 A Meta-Analysis towards an Integrated Framework for Sustainable Urban Transportation within the Concept of Sustainable Cities

Authors: Hande Aladağ, Gökçe Aydın

Abstract:

The world’s population is increasing continuously and rapidly. Moreover, there are other problems such as the decline of natural energy resources, global warming, and environmental pollution. These facts have made sustainability an important and primary topic from future planning perspective. From this perspective, constituting sustainable cities and communities can be considered as one of the key issues in terms of sustainable development goals. The concept of sustainable cities can be evaluated under three headings such as green/sustainable buildings, self – contained cities and sustainable transportation. This study only concentrates on how to form and support a sustainable urban transportation system to contribute to the sustainable urbanization. Urban transportation system inevitably requires many engineering projects with various sizes. Engineering projects generally have four phases, in the following order: Planning, design, construction, operation. The order is valid but there are feedbacks from every phase to every phase in its upstream. In this regard, engineering projects are iterative processes. Sustainability is an integrated and comprehensive concept thus it should be among the primary concerns in every phase of transportation projects. In the study, a meta-analysis will be performed on the related studies in the literature. It is targeted and planned that, as a result of the findings of this meta-analysis, a framework for the list of principles and actions for sustainable transport will be formed. The meta-analysis will be performed to point out and clarify sustainability approaches in every phase of the related engineering projects, with also paying attention to the iterative nature of the process and relative contribution of the action for the outcomes of the sustainable transportation system. However, the analysis will not be limited to the engineering projects, non-engineering solutions will also be included in the meta-analysis. The most important contribution of this study is a determination of the outcomes of a sustainable urban transportation system in terms of energy efficiency, resource preservation and related social, environmental and economic factors. The study is also important because it will give light to the engineering and management approaches to achieve these outcomes.

Keywords: meta-analysis, sustainability, sustainable cities, sustainable urban transportation, urban transportation

Procedia PDF Downloads 332
19541 Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)

Authors: Mehaiguene Madjid, Meddi Mohamed

Abstract:

The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example.

Keywords: balance water, management basin, climate change scenario, Upper and Middle Cheliff

Procedia PDF Downloads 313
19540 Knowledge Management in the Tourism Industry in Project Management Paradigm

Authors: Olga A. Burukina

Abstract:

Tourism is a complex socio-economic phenomenon, partly regulated by national tourism industries. The sustainable development of tourism in a region, country or in tourist destination depends on a number of factors (political, economic, social, cultural, legal and technological), the understanding and correct interpretation of which is invariably anthropocentric. It is logical that for the successful functioning of a tour operating company, it is necessary to ensure its sustainable development. Sustainable tourism is defined as tourism that fully considers its current and future economic, social and environmental impacts, taking into account the needs of the industry, the environment and the host communities. For the business enterprise, sustainable development is defined as adopting business strategies and activities that meet the needs of the enterprise and its stakeholders today while protecting, sustaining and enhancing the human and natural resources that will be needed in the future. In addition to a systemic approach to the analysis of tourist destinations, each tourism project can and should be considered as a system characterized by a very high degree of variability, since each particular case of its implementation differs from the previous and subsequent ones, sometimes in a cardinal way. At the same time, it is important to understand that this variability is predominantly of anthropogenic nature (except for force majeure situations that are considered separately and afterwards). Knowledge management is the process of creating, sharing, using and managing the knowledge and information of an organization. It refers to a multidisciplinary approach to achieve organisational objectives by making the best use of knowledge. Knowledge management is seen as a key systems component that allows obtaining, storing, transferring, and maintaining information and knowledge in particular, in a long-term perspective. The study aims, firstly, to identify (1) the dynamic changes in the Italian travel industry in the last 5 years before the COVID19 pandemic, which can be considered the scope of force majeure circumstances, (2) the impact of the pandemic on the industry and (3) efforts required to restore it, and secondly, how project management tools can help to improve knowledge management in tour operating companies to maintain their sustainability, diminish potential risks and restore their pre-pandemic performance level as soon as possible. The pilot research is based upon a systems approach and has employed a pilot survey, semi-structured interviews, prior research analysis (aka literature review), comparative analysis, cross-case analysis, and modelling. The results obtained are very encouraging: PM tools can improve knowledge management in tour operating companies and secure the more sustainable development of the Italian tourism industry based on proper knowledge management and risk management.

Keywords: knowledge management, project management, sustainable development, tourism industr

Procedia PDF Downloads 158
19539 Flood Risk Management in Low Income Countries: Balancing Risk and Development

Authors: Gavin Quibell, Martin Kleynhans, Margot Soler

Abstract:

The Sendai Framework notes that disaster risk reduction is essential for sustainable development, and Disaster Risk Reduction is included in 3 of the Sustainable Development Goals (SDGs), and 4 of the SDG targets. However, apart from promoting better governance and resourcing of disaster management agencies, little guidance is given how low-income nations can balance investments across the SDGs to achieve sustainable development in an increasingly climate vulnerable world with increasing prevalence of flood and drought disasters. As one of the world’s poorest nations, Malawi must balance investments across all the SDGs. This paper explores how Malawi’s National Guidelines for Community-based Flood Risk Management integrate sustainable development and flood management objectives at different administrative levels. While Malawi periodically suffers from large, widespread flooding, the greatest impacts are felt through the smaller annual floods and flash floods. The Guidelines address this through principles that recognize that while the protection of human life is the most important priority for flood risk management, addressing the impacts of floods on the rural poor and the economy requires different approaches. The National Guidelines are therefore underpinned by the following; 1. In the short-term investments in flood risk management must focus on breaking the poverty – vulnerability cycle; 2. In the long-term investments in the other SDGs will have the greatest flood risk management benefits; 3. If measures are in place to prevent loss of life and protect strategic infrastructure, it is better to protect more people against small and medium size floods than fewer people against larger floods; 4. Flood prevention measures should focus on small (1:5 return period) floods; 5. Flood protection measures should focus on small and medium floods (1:20 return period) while minimizing the risk of failure in larger floods; 6. The impacts of larger floods ( > 1:50) must be addressed through improved preparedness; 7. The impacts of climate change on flood frequencies are best addressed by focusing on growth not overdesign; and 8. Manage floods and droughts conjunctively. The National Guidelines weave these principles into Malawi’s approach to flood risk management through recommendations for planning and implementing flood prevention, protection and preparedness measures at district, traditional authority and village levels.

Keywords: flood risk management in low-income countries, sustainable development, investments in prevention, protection and preparedness, community-based flood risk management, Malawi

Procedia PDF Downloads 242
19538 The Practice of Integrating Sustainable Elements into the Housing Industry in Malaysia

Authors: Wong Kean Hin, Kumarason A. L. V. Rasiah

Abstract:

A building provides shelter and protection for an individual to live, work, sleep, procreate or engage in leisurely activities comfortably. Currently, a very popular term related to building was often stated by many parties, which is sustainability. A sustainable building is environmental friendly, healthy to the occupants, as well as efficient in electricity and water. This particular research is important to any parties that are involved in the construction industry. This research will provide the awareness and acceptability of Malaysian public towards sustainable residential building. It will also provide the developers about which sustainable features that the people usually want so that the developers can build a sustainable housing that suits the needs of people. Then, propose solutions to solve the difficulties of implementing sustainability in Malaysian housing industry. Qualitative and quantitative research methods were used throughout the process of data collection. The quantitative research method was distribution of questionnaires to 100 Malaysian public and 50 individuals that worked in developer companies. Then, the qualitative method was an interview session with experienced personnel in Malaysian construction industry. From the data collected, there is increasingly Malaysian public and developers are aware about the existence of sustainability. Moreover, the public is willing to invest on sustainable residential building with minimum additional cost. However, there is a mismatch in between sustainable elements provided by developers and the public needs. Some recommendations to improve the progression of sustainability had been proposed in this study, which include laws enforcement, cooperation between the both government sector with private sector, and private sector with private sector, and learn from modern countries. These information will be helpful and useful for the future of sustainability development in Malaysia.

Keywords: acceptability, awareness, Malaysian housing industry, sustainable elements, green building index

Procedia PDF Downloads 369
19537 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters

Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas

Abstract:

Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.

Keywords: ammonia removal, biofiltration, natural materials, odour control

Procedia PDF Downloads 369
19536 Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China

Authors: Mingbao Chen, Mingli Zhao

Abstract:

The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred.

Keywords: institutional overlap, over management, coastal zone management, coastal zone economy

Procedia PDF Downloads 394
19535 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 114
19534 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 69