Search results for: skin-to-skin contact
1408 A Monolithic Arbitrary Lagrangian-Eulerian Finite Element Strategy for Partly Submerged Solid in Incompressible Fluid with Mortar Method for Modeling the Contact Surface
Authors: Suman Dutta, Manish Agrawal, C. S. Jog
Abstract:
Accurate computation of hydrodynamic forces on floating structures and their deformation finds application in the ocean and naval engineering and wave energy harvesting. This manuscript presents a monolithic, finite element strategy for fluid-structure interaction involving hyper-elastic solids partly submerged in an incompressible fluid. A velocity-based Arbitrary Lagrangian-Eulerian (ALE) formulation has been used for the fluid and a displacement-based Lagrangian approach has been used for the solid. The flexibility of the ALE technique permits us to treat the free surface of the fluid as a Lagrangian entity. At the interface, the continuity of displacement, velocity and traction are enforced using the mortar method. In the mortar method, the constraints are enforced in a weak sense using the Lagrange multiplier method. In the literature, the mortar method has been shown to be robust in solving various contact mechanics problems. The time-stepping strategy used in this work reduces to the generalized trapezoidal rule in the Eulerian setting. In the Lagrangian limit, in the absence of external load, the algorithm conserves the linear and angular momentum and the total energy of the system. The use of monolithic coupling with an energy-conserving time-stepping strategy gives an unconditionally stable algorithm and allows the user to take large time steps. All the governing equations and boundary conditions have been mapped to the reference configuration. The use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. The robustness and good performance of the proposed method are demonstrated by solving benchmark problems from the literature.Keywords: ALE, floating body, fluid-structure interaction, monolithic, mortar method
Procedia PDF Downloads 2741407 Sexual Behaviours among Iranian Men and Women Aged 15 to 49 Years in Metropolitan Tehran, Iran: A Cross-Sectional Study
Authors: Mahnaz Motamedi, Mohammad Shahbazi, Shahrzad Rahimi-Naghani, Mehrdad Salehi
Abstract:
Introduction and Aim: This study assessed sexual behaviours among men and women aged 15 to 49 years in Tehran. Material and Methods: This was a cross-sectional study conducted on 755 men and women aged 15 to 49 years who were residents of Tehran. To select the participants, a multistage, cluster, random sampling method was used and included different regions of Tehran. The data were collected using the WHO-endorsed Questionnaire of Sexual and Reproductive Health. Descriptive, bivariate, and multivariate analyses were conducted using SPSS version 20. Sexual and reproductive health (SRH) behaviours was a scale variable that was constructed from items of six sections: sexual experiences, characteristics of the first sexual partner, characteristics of the first intercourse, next sexual contact and the consequences of the first sexual contact, homosexual experiences and the causes of sexual abstinence. Results: The mean age at the time of sexual intercourse with penetration (vaginal, anal) was 19.88 in men and 21.82 in women. Multivariate analysis using linear regression showed that by controlling for other variables, gender had a significant relationship with having sexual experience, mean age of first sexual intercourse, and being multi-partner. Thus, women with sexual experience were 0.158 units less than men. The mean age of first intercourse in women was 1.57 units higher than men and being a multi-partner in women was 0.247 less than men (P < 0.001). Sexual experience in very religious and relatively religious individuals was 0.332 and 0.218 units less than those for whom religion did not matter (P < 0.001). 25.6% of men and 40.7% of women who did not have sexual experience at the time of the study stated that their reason for abstinence was their unwillingness to have sex (P < 0.05). 35.9% of men and 16.5% of women stated that the reason for abstinence was not providing a suitable opportunity (P < 0.001). 4.7% of men and 1.7% of women had sexual attraction to the same sex. The difference between men and women was significant (P < 0.001). Conclusion: Sexual relation is also present in singles and younger groups and is not limited to married or final marriage candidates. Therefore, more evaluation should be done in national research and interventions for sexual and reproductive health services should be done at the macro level of policy making.Keywords: sexual behaviours, Iranian men and women, Iran, cross-sectional study
Procedia PDF Downloads 1571406 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao
Abstract:
In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs
Procedia PDF Downloads 2361405 BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon
Authors: Juliet Okoli
Abstract:
The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials.Keywords: activated carbon, BTEX removal, low cost adsorbents, water treatment
Procedia PDF Downloads 2691404 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 2901403 Seroprevalence and Determinants of Toxoplasmosis in Pregnant Women Attending Antenatal Clinic at the University Teaching Hospital, Lusaka, Zambia: A Cross-Sectional Study
Authors: Christiana Frimpong, Mpundu Makasa, Lungowe Sitali, Charles Michelo
Abstract:
Background: Toxoplasmosis is a neglected zoonotic disease which is prevalent among pregnant women especially in Africa. This study aimed to determine the seroprevalence and determinants of the disease among pregnant women attending the antenatal clinic at the University Teaching Hospital (UTH). Method: A cross-sectional study was employed where 411 pregnant women attending the antenatal clinic at UTH were interviewed using closed-ended questionnaires. Their blood was also tested for Toxoplasma gondii IgG and IgM antibodies using the OnSite Toxo IgG/IgM Combo Rapid Test cassettes by CTK Biotech, Inc, USA. Result: The overall seroprevalence of the infection (IgG) was 5.87%. There was no seropositive IgM result. Contact with cats showed 7.81 times the risk of contracting the infection in the pregnant women and being a farmer/being involved in construction work showed 15.5 times likelihood of contracting the infection. Socio-economic status of the pregnant women also presented an inverse relationship (showed association) with the infection graphically. However, though there were indications of the association between contact with cats, employment type as well as the socioeconomic status of the pregnant women with the infection, there was not enough evidence to suggest these factors as significant determining factors of Toxoplasma gondii infection in our study population. Conclusion: There is a low prevalence of Toxoplasma gondii infection among pregnant women in Lusaka, Zambia. Screening for the infection among pregnant women can be done once or twice during pregnancy to help protect both mother and child from the disease. Health promotion among women of child bearing age on the subject is of immense importance in order to help curb the situation. Further studies especially that of case-control and cohort studies should be carried out in the country in order to better ascertain the extent of the condition nationwide.Keywords: determinants, pregnant women, seroprevalence, toxoplasmosis, University Teaching Hospital (UTH), Zambia
Procedia PDF Downloads 2321402 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.Keywords: microchannel, boiling, Cahn-Hilliard method, simulation
Procedia PDF Downloads 4241401 Toxicity of Bisphenol-A: Effects on Health and Regulations
Authors: Tuğba Özdal, Neşe Şahin Yeşilçubuk
Abstract:
Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide in the plastic industry. This compound is mostly used in producing polycarbonate plastics that are often used for food and beverage storage, and BPA is also a component of epoxy resins that are used to line food and beverage containers. Studies performed in this area indicated that BPA could be extracted from such products while they are in contact with food. Therefore, BPA exposure is presumed. In this paper, the chemical structure of BPA, factors affecting BPA migration to food and beverages, effects on health, and recent regulations will be reviewed.Keywords: BPA, health, regulations, toxicity
Procedia PDF Downloads 3401400 Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment
Authors: Elizaveta Korzhova, Sebastien Deon, Patrick Fievet, Dmitry Lopatin, Oleg Baranov
Abstract:
Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances.Keywords: ultrafiltration, electrospray deposition, ion rejection, permeation flux, zeta-potential, hydrophobicity
Procedia PDF Downloads 1871399 Survey of the Elimination of Red Acid Dye by Wood Dust
Authors: N. Ouslimani, T. Abadlia, M. Fadel
Abstract:
This work focused on the elimination of acid textile dye (red bermacide acid dye BN-CL-200), widely used for dyeing wool and polyamide fibers, by adsorption on a natural material, wood sawdust, in the static mode by keeping under continuous stirring, a specific mass of the adsorbent, with a dye solution of known concentration. The influence of various parameters is studied like the influence of particle size, mass, pH and time. The best results were obtained with 0.4 mm grain size, mass of 3g, Temperature of 20 °C, pH 2 and Time contact of 120 min.Keywords: acid dye, environment, wood sawdust, wastewater
Procedia PDF Downloads 4421398 A Case Study of Kinesthetic Intelligence Development Intervention on One Asperger Child
Authors: Chingwen Yeh, I. Chen Huang
Abstract:
This paper aims to conduct a case study on kinesthetic intelligence development intervention with a child who has Asperger symptom identified by physician. First, the characteristics of Asperger were defined based on the related literature. Some Asperger's people are born with outstanding insight and are good at solving complex and difficult problems. In contrast to high-functioning autistic, Asperger children do not lose their ability to express themselves verbally. However in the cognitive function, they focus mainly on the things they are interested in instead of paying attention to the whole surrounding situation. Thus it is difficult for them not only to focus on things that they are not interesting in, but also to interact with people. Secondly, 8-weeks of kinesthetic intelligence development courses were designed within a series of physical action that including the following sections: limbs coordination, various parts of body rhythm changes, strength and space awareness and breathing practice. In classroom observations were recorded both on words and with video as the qualitative research data. Finally, in-depth interview with the case child’s teachers, parents and other in class observers were documented on a weekly base in order to examine the effectiveness of before and after the kinesthetic intelligence development course and to testify the usefulness of the lesson plan. This research found that the case child has improved significantly in terms of attention span and body movement creativity. In the beginning of intervention, the case child made less eyes contact with others. The instructor needed to face the case child to confirm the eyes contact. And the instructor also used various adjective words as guiding language for all kinds of movement sequence practice. The result can cause the case child’s attention and learning motivation. And the case child understand what to do to enhance kinesthetic intelligence. These authors hope findings of this study can contribute as reference for the further research on the related topic.Keywords: asperger symptom, body rhythm, kinesthetic intelligence, space awareness
Procedia PDF Downloads 2391397 Assessment of Cafe Design Criteria in a Consumerist Society: An Approach on Place Attachment
Authors: Azadeh Razzagh Shoar, Hassan Sadeghi Naeini
Abstract:
There is little doubt that concepts such as space and place have become more common considering that human beings have grown more apart and more than having contact with each other, they are in contact with objects, spaces, and places. Cafés, as a third place which is neither home nor workplace, have attracted these authors’ interests, who are industrial and interior designers. There has been much research on providing suitable cafés, customer behavior, and criteria for spatial sense. However, little research has been carried out on consumerism, desire for variety, and their relationship with changing places, and specifically cafes in term of interior design. In fact, customer’s sense of place has mostly been overlooked. In this case study, authors conducted to challenge the desire for variety and consumerism as well as investigating the addictive factors in cafés. From the designers’ point of view and by collecting data through observing and interviewing café managers, this study investigates and analyzes the customers in two cafes located in a commercial building in northern Tehran (a part of city with above average economic conditions). Since these two cafés are at the same level in terms of interior and spatial design, the question is raised as to why customers patronize the newly built café despite their loyalty to the older café. This study aims to investigate and find the criteria based on the sense of space (café) in a consumerist society, a world where consumption is a myth. Going to cafés in a larger scale than a product can show a selection and finally who you are, where you go, which brand of coffee you prefer, and what time of the day you would like to have your coffee. The results show that since people spend time in cafés more than any other third place, the interaction they have with their environment is more than anything else, and they are consumers of time and place more than coffee or any other product. Also, if there is a sense of consumerism and variety, it is mostly for the place rather than coffee and other products. To satisfy this sense, individuals go to a new place (the new café). It can be easily observed that this sense overshadows the sense of efficiency, design, facilities and all important factor for a café.Keywords: place, cafe, consumerist society, consumerism, desire for variety
Procedia PDF Downloads 1641396 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 2951395 Direct Contact Ultrasound Assisted Drying of Mango Slices
Authors: E. K. Mendez, N. A. Salazar, C. E. Orrego
Abstract:
There is undoubted proof that increasing the intake of fruit lessens the risk of hypertension, coronary heart disease, stroke, and probable evidence that lowers the risk of cancer. Proper fruit drying is an excellent alternative to make their shelf-life longer, commercialization easier, and ready-to-eat healthy products or ingredients. The conventional way of drying is by hot air forced convection. However, this process step often requires a very long residence time; furthermore, it is highly energy consuming and detrimental to the product quality. Nowadays, power ultrasound (US) technic has been considered as an emerging and promising technology for industrial food processing. Most of published works dealing with drying food assisted by US have studied the effect of ultrasonic pre-treatment prior to air-drying on food and the airborne US conditions during dehydration. In this work a new approach was tested taking in to account drying time and two quality parameters of mango slices dehydrated by convection assisted by 20 KHz power US applied directly using a holed plate as product support and sound transmitting surface. During the drying of mango (Mangifera indica L.) slices (ca. 6.5 g, 0.006 m height and 0.040 m diameter), their weight was recorded every hour until final moisture content (10.0±1.0 % wet basis) was reached. After previous tests, optimization of three drying parameters - frequencies (2, 5 and 8 minutes each half-hour), air temperature (50-55-60⁰C) and power (45-70-95W)- was attempted by using a Box–Behnken design under the response surface methodology for the optimal drying time, color parameters and rehydration rate of dried samples. Assays involved 17 experiments, including a quintuplicate of the central point. Dried samples with and without US application were packed in individual high barrier plastic bags under vacuum, and then stored in the dark at 8⁰C until their analysis. All drying assays and sample analysis were performed in triplicate. US drying experimental data were fitted with nine models, among which the Verna model resulted in the best fit with R2 > 0.9999 and reduced χ2 ≤ 0.000001. Significant reductions in drying time were observed for the assays that used lower frequency and high US power. At 55⁰C, 95 watts and 2 min/30 min of sonication, 10% moisture content was reached in 211 min, as compared with 320 min for the same test without the use of US (blank). Rehydration rates (RR), defined as the ratio of rehydrated sample weight to that of dry sample and measured, was also larger than those of blanks and, in general, the higher the US power, the greater the RR. The direct contact and intermittent US treatment of mango slices used in this work improve drying rates and dried fruit rehydration ability. This technique can thus be used to reduce energy processing costs and the greenhouse gas emissions of fruit dehydration.Keywords: ultrasonic assisted drying, fruit drying, mango slices, contact ultrasonic drying
Procedia PDF Downloads 3451394 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 1911393 Attitudes of the Indigenous People from Providencia, Amazon towards the Bora Language
Authors: Angela Maria Sarmiento
Abstract:
Since the end of the 19th century, the Bora people struggled to survive two stages of colonial domination, which resulted in situations of forced contact with the Western world. Their inclusion in global designs altered the configuration of their local spaces and social practices; thus the Bora language was affected and prone to transformation. This descriptive, interpretive study, within the indigenous and minoritized groups’ research field, aimed at analysing the linguistic attitudes as well as the contextual situation of the Bora language in Providencia, an ancestral territory and a speech community contained in the midst of the Colombian Amazon rainforest. Through the inquiry of their sociolinguistic practices, this study also considered the effects of the course of events derived from the rubber exploitation in the late 19th century, and the arrival of the Capuchin’s mission in the early 20th century. The methodology used in this study had an ethnographic approach, which allowed the researcher to study the social phenomena from the perspective of the participants. Fieldwork, diary, field notes, and semi-structured interviews were conducted and then triangulated with participant observations. The findings of this study suggest that there is a transition from current individual bilingualism towards Spanish monolingualism; this is enhanced by the absence of a functional distribution of the three varieties (Bora, Huitoto, and Spanish). Also, the positive attitudes towards the Spanish language are based on its functionality while positive attitudes towards the Bora language mostly refer to pride and identity. Negative attitudes are only directed towards the Bora language. In the search for the roots of these negative attitudes, appeared the traumatic experiences of the rubber exploitation and the indigenous experiences at the capuchin’s boarding school. Finally, the situation of the Bora language can be configured as a social fact strongly connected to previous years of colonial dominations and to the current and continuous incursion of new global-colonial designs.Keywords: Bora language, language contact, linguistic attitudes, speech communities
Procedia PDF Downloads 1471392 Inelastic and Elastic Taping in Plantar Pressure of Runners Pronators: Clinical Trial
Authors: Liana Gomide, Juliana Rodrigues
Abstract:
The morphology of the foot defines its mode of operation and a biomechanical reform indispensable for a symmetrical distribution of plantar pressures in order not to overload some of its components in isolation. High plantar pressures at specific points in the foot may be a causal factor in several orthopedic disorders that affect the feet such as pain and stress fracture. With digital baro-podometry equipment one can observe an intensity of pressures along the entire foot and quantify some of the movements, such as a subtalar pronation present in the midfoot region. Although, they are involved in microtraumas. In clinical practice, excessive movement has been limited with the use of different taping techniques applied on the plantar arch. Thus, the objective of the present study was to analyze and compare the influence of the inelastic and elastic taping on the distribution of plantar pressure of runners pronators. This is a randomized clinical trial and blind-crossover. Twenty (20) male subjects, mean age 33 ± 7 years old, mean body mass of 71 ± 7 kg, mean height of 174 ± 6 cm, were included in the study. A data collection was carried out by a single research through barop-odometry equipment - Tekscan, model F-scan mobile. The tests were performed at three different times. In the first, an initial barop-odometric evaluation was performed, without a bandage application, with edges at a speed of 9.0 km/h. In the second and third moments, the inelastic or elastic taping was applied consecutively, according to the definition defined in the randomization. As results, it was observed that both as inelastic and elastic taping, provided significant reductions in contact pressure and peak pressure values when compared to the moment without a taping. However, an elastic taping was more effective in decreasing contact pressure (no bandage = 714 ± 201, elastic taping = 690 ± 210 and inelastic taping = 716 ± 180) and no peak pressure in the midfoot region (no bandage = 1490 ± 42, elastic taping = 1273 ± 323 and inelastic taping = 1487 ± 437). It is possible to conclude that it is an elastic taping provided by pressure in the middle region, thereby reducing the subtalar pronunciation event during the run.Keywords: elastic taping, inelastic taping, running, subtalar pronation
Procedia PDF Downloads 1561391 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD
Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer
Abstract:
Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film
Procedia PDF Downloads 2941390 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone
Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma
Abstract:
Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes
Procedia PDF Downloads 1681389 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle
Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.
Abstract:
In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.
Procedia PDF Downloads 741388 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method
Authors: Zulkifli, I. W. Eltara, Anawati
Abstract:
Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.Keywords: superoleophobic, nanocellulose, aerogel, sol-gel
Procedia PDF Downloads 3511387 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 171386 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 1421385 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment
Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa
Abstract:
The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 321384 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts
Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken
Abstract:
Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.Keywords: 3D printing, biomechanics, bone repair, stem cell
Procedia PDF Downloads 1721383 Attitudes Towards Immigrants: Evidence from Veterans of Colonial Wars in Africa
Authors: Margarida Matos, João Pereira dos Santos, José Tavares
Abstract:
Anti-minority discrimination is a persistent phenomenon with long-run effects. While there is a vast literature in economics and psychology that shows that personality and beliefs are not fixed and can be altered by experience, particularly in the so-called impressionable years in early adulthood, less is known about the long-lasting impacts of major events occurring during this time on minority attitudes. In this paper, we study the impact of serving in the military on long-term attitudes towards minorities. For many, military conscription and serving in war are unique life-shaping events. In the context of military service, individuals from different socioeconomic backgrounds interact and learn with each other, potentially changing their views and attitudes in a persistent manner. A prominent theory about the change of attitudes is the contact theory. It suggests that prejudice can be decreased if members of the groups interact with one another. The present paper adds to the literature by providing evidence from a more complicated setting involving the exposure to combat. We study the attitudes of veterans of the Portuguese Colonial War between 1961 and 1974, what was the latest war between African independence movements and Europeans. More than 70 percent of military age Portuguese men were drafted every year and sent to fight in Africa in the widest draft in post-World War II Western Europe. The contact between Portuguese and African soldiers was both cooperative as well as adversarial. Portuguese fought against but also alongside locally recruited African men, who represented half of the Portuguese contingent for substantial periods. We use data from the European Social Survey to identify Portuguese citizens likely to have been drafted and were send to fight in the former Portuguese colonies in Africa. We show that men likely to have fought in African wars are more accepting of immigrants than women of their same cohort, as well as than males from younger and older cohorts. The use of corresponding cohorts from Spain as placebo tests confirms our results. Our findings also hold in a regression discontinuity design setting.Keywords: attitudes, immigration, war in Africa, veterans, portugal
Procedia PDF Downloads 811382 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust
Authors: Sardar Khana, Zar Ali Khana
Abstract:
Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake
Procedia PDF Downloads 1301381 Wetting Features of Butterflies Morpho Peleides and Anti-icing Behavior
Authors: Burdin Louise, Brulez Anne-Catherine, Mazurcyk Radoslaw, Leclercq Jean-louis, Benayoun Stéphane
Abstract:
By using a biomimetic approach, an investigation was conducted to determine the connections between morphology and wetting. The interest is focused on the Morpho peleides butterfly. This butterfly is already well-known among researchers for its brilliant iridescent color and has inspired numerous innovations. The intricate structure of its wings is responsible for such color. However, this multiscale structure exhibits a multitude of other features, such as hydrophobicity. Given the limited research on the wetting properties of Morpho butterfly, a detailed analysis of its wetting behavior is proposed. Multiscale surface topographies of the Morpho peleides butterfly were analyzed using scanning electron microscope and atomic force microscopy. To understand the relationship between morphology and wettability, a goniometer was employed to measured static and dynamic contact angle. Since several studies have consistently demonstrated that superhydrophobic surfaces can effectively delay freezing, icing delay time the Morpho’s wings was also measured. The results revealed contact angles close to 136°, indicating a high degree of hydrophobicity. Moreover, sliding angles (SA) were measured in different directions, including along and against the rolling-outward direction. The findings suggest anisotropic wetting. Specifically, when the wing was tilted along the rolling outward direction (i.e., away from the insect’s body) SA was about 7°. While, when the wing was tilted against the rolling outward direction, SA was about 29°. This phenomenon is directly linked to the butterfly’s survival strategy. To investigate the exclusive morphological impact on anti-icing properties, PDMS replicas of the Morpho butterfly were obtained. When compared to flat PDMS and microscale textured PDMS, Morpho replications exhibited a longer freezing time. Therefore, this could be a source of inspiration for designing superhydrophobic surfaces with anti-icing applications or functional surfaces with controlled wettability.Keywords: biomimetic, anisotropic wetting, anti-icing, multiscale roughness
Procedia PDF Downloads 581380 Seroprevalence of Hepatitis B and C among Healthcare Workers in Dutse Metropolis, Jigawa State, Nigeria
Authors: N. M. Sani, I. Bitrus, A. M. Sarki, N. S. Mujahid
Abstract:
Hepatitis is one of the neglected infectious diseases in sub Saharan Africa, and most of the available data is based on blood donors. Health care workers (HCWs) often get infected as a result of their close contact with patients. A cross-sectional study was conducted to determine the prevalence of hepatitis B and C among this group of professionals with a view to improving the quality of care to their patients. Hepatitis B and C infections pose a major public health problem worldwide. While infection is highest in the developing world particularly Asia and sub-Saharan Africa, healthcare workers are at higher risk of acquiring blood-borne viral infections, particularly Hepatitis B and C which are mostly asymptomatic. This study was aimed at determining the prevalence of Hepatitis B and C infections and associated risk factors among health care workers in Dutse Metropolis, Jigawa State - Nigeria. A standard rapid immuno-chromatographic technique i.e. rapid ELISA was used to screen all sera for Hepatitis B surface antigen (HBsAg) and Hepatitis C viral antibody (HCVAb) respectively. Strips containing coated antibodies and antigens to HBV and HCV respectively were removed from the foil. Strips were labeled according to samples. Using a separate disposable pipette, 2 drops of the sample (plasma) were added into each test strip and allowed to run across the absorbent pad. Results were read after 15 minutes. The prevalence of HBV and HCV infection in 100 healthcare workers was determined by testing the plasma collected from the clients during their normal checkup using HBsAg and HCVAb test strips. Results were subjected to statistical analysis using chi-square test. The prevalence of HBV among HCWs was 19 out of 100 (19.0%) and that of HCV was 5 out of 100 (5.0%) where in both cases, higher prevalence was observed among female nurses. It was also observed that all HCV positive cases were recorded among nurses only. The study revealed that nurses are at greater risk of contracting HBV and HCV due to their frequent contact with patients. It is therefore recommended that effective vaccination and other infection control measures be encouraged among healthcare workers.Keywords: prevalence, hepatitis, viruses, healthcare workers, infection
Procedia PDF Downloads 3611379 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.Keywords: HVOF, residual stress, thermal spray, WC-Co
Procedia PDF Downloads 311