Search results for: semantic dementia
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 668

Search results for: semantic dementia

248 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment

Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader

Abstract:

The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.

Keywords: dialogue, e-learning, FRAME, information system, natural language

Procedia PDF Downloads 377
247 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
246 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
245 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
244 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 252
243 Frequency of the English Phrasal Verbs Used by Iranian Learners as a Reference to the Style of Writing Adopted by the Learners

Authors: Hamzeh Mazaherylaghab, Mehrangiz Vahabian, Seyyedeh Zahra Asghari

Abstract:

The present study initially focused on the frequency of phrasal verbs used by Iranian learners of English. The results then needed to be compared to the findings from native speaker corpora. After the extraction of phrasal verbs from learner and native-speaker corpora the findings were analysed. The results showed that Iranian learners avoided using phrasal verbs in many cases. Some of the findings proved to be significant. It was also found that the learners used the single-word counterparts of the avoided phrasal verbs to compensate for their lack of knowledge in many cases. Semantic complexity and Lack of L1 counterpart may have been the main reasons for avoidance, but despite the avoidance phenomenon, the learners displayed a tendency to use many other phrasal verbs which may have been due to the increase in the number of multi-word verbs in Persian. The overall scores confirmed the fact that the language produced by the learners illustrates signs of more formal style in comparison with the native speakers of English by using less phrasal verbs and more formal single word verbs instead.

Keywords: corpus, corpora, LOCNESS, phrasal verbs, single-word verb

Procedia PDF Downloads 202
242 Forming Form, Motivation and Their Biolinguistic Hypothesis: The Case of Consonant Iconicity in Tashelhiyt Amazigh and English

Authors: Noury Bakrim

Abstract:

When dealing with motivation/arbitrariness, forming form (Forma Formans) and morphodynamics are to be grasped as relevant implications of enunciation/enactment, schematization within the specificity of language as sound/meaning articulation. Thus, the fact that a language is a form does not contradict stasis/dynamic enunciation (reflexivity vs double articulation). Moreover, some languages exemplify the role of the forming form, uttering, and schematization (roots in Semitic languages, the Chinese case). Beyond the evolutionary biosemiotic process (form/substance bifurcation, the split between realization/representation), non-isomorphism/asymmetry between linguistic form/norm and linguistic realization (phonetics for instance) opens up a new horizon problematizing the role of Brain – sensorimotor contribution in the continuous forming form. Therefore, we hypothesize biotization as both process/trace co-constructing motivation/forming form. Henceforth, referring to our findings concerning distribution and motivation patterns within Berber written texts (pulse based obstruents and nasal-lateral levels in poetry) and oral storytelling (consonant intensity clustering in quantitative and semantic/prosodic motivation), we understand consonant clustering, motivation and schematization as a complex phenomenon partaking in patterns of oral/written iconic prosody and reflexive metalinguistic representation opening the stable form. We focus our inquiry on both Amazigh and English clusters (/spl/, /spr/) and iconic consonant iteration in [gnunnuy] (to roll/tumble), [smummuy] (to moan sadly or crankily). For instance, the syllabic structures of /splaeʃ/ and /splaet/ imply an anamorphic representation of the state of the world: splash, impact on aquatic surfaces/splat impact on the ground. The pair has stridency and distribution as distinctive features which specify its phonetic realization (and a part of its meaning) /ʃ/ is [+ strident] and /t/ is [+ distributed] on the vocal tract. Schematization is then a process relating both physiology/code as an arthron vocal/bodily, vocal/practical shaping of the motor-articulatory system, leading to syntactic/semantic thematization (agent/patient roles in /spl/, /sm/ and other clusters or the tense uvular /qq/ at the initial position in Berber). Furthermore, the productivity of serial syllable sequencing in Berber points out different expressivity forms. We postulate two Components of motivated formalization: i) the process of memory paradigmatization relating to sequence modeling under sensorimotor/verbal specific categories (production/perception), ii) the process of phonotactic selection - prosodic unconscious/subconscious distribution by virtue of iconicity. Basing on multiple tests including a questionnaire, phonotactic/visual recognition and oral/written reproduction, we aim at patterning/conceptualizing consonant schematization and motivation among EFL and Amazigh (Berber) learners and speakers integrating biolinguistic hypotheses.

Keywords: consonant motivation and prosody, language and order of life, anamorphic representation, represented representation, biotization, sensori-motor and brain representation, form, formalization and schematization

Procedia PDF Downloads 144
241 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition

Procedia PDF Downloads 338
240 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology

Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy

Abstract:

Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.

Keywords: legacy systems, redocumentation, big data analysis, parallel processing

Procedia PDF Downloads 46
239 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 61
238 Gestural Pragmatic Inference among Primates: An Experimental Approach

Authors: Siddharth Satishchandran, Brian Khumalo

Abstract:

Humans are able to derive semantic content from syntactic and pragmatic sources. Multimodal evidence from signaling theory, which examines communication between individuals within and across species, suggests that non-human primates possess similar syntactic and pragmatic capabilities. However, the extent remains unknown because primate pragmatics are relatively under-examined. Our paper reviews research within communication theory amongst non-human primates to understand current theoretical trends. We examine evidence for primate pragmatic capacities through observational, experimental, and theoretical work on gestures. Given fragmented theoretical perspectives, we provide a unified framework of communication for future research that contextualizes the available research under code biology. To achieve this, we rely on biological semiotics (biosemiotics), the philosophy of biology investigating prelinguistic meaning-making as a function of signs and codes. We close by discussing areas of potential research for studying gestural pragmatics amongst non-human primates, particularly chimpanzees (Pan troglodytes), Diana monkeys (Cercopithecus diana), and other potential candidates.

Keywords: pragmatics, non-human primates, gestural communication, biological semiotics

Procedia PDF Downloads 39
237 Personal Knowledge Management: Systematic Review and Future Direction

Authors: Kuribachew Gizaw Tohiye, Monica Garfield

Abstract:

Personal knowledge management is the aspect of knowledge management that relates to the way in which individuals organize and manage their own set of knowledge. While in that respect, there has been research in this area for the past 25 years, it is at present necessary to speculate upon what research has been done and what we have discovered about this arena of knowledge management. In contrast to organizational knowledge management, which focuses on a firm’s profitability and competitiveness, personal knowledge management (PKM) is concerned with the person’s self-effectiveness, competence and success. People are concerned in managing their knowledge in order to become more efficient in a variety of personal and organizational interests. This study presents a systematic review of PKM studies. Articles with PKM concepts are reviewed with the objective of clearly defining PKM, identifying the benefits of PKM, classifying the tools that enable PKM and finding the research gaps to indicate future research directions in the area. Consequently, we have developed a definition of PKM and identified the benefits of PKM, including an understanding of who seeks PKM and for what. Tools enabling PKM are identified and classified under three categories Web 1.0, 2.0 and 3.0 and finally the research gap and future directions are suggested. Research which facilitates collaboration by using semantic technologies is suggested to be studied further to improve PKM effectiveness.

Keywords: personal knowledge management, knowledge management, organizational knowledge management, systematic review

Procedia PDF Downloads 331
236 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 70
235 Argument Representation in Non-Spatial Motion Bahasa Melayu Based Conceptual Structure Theory

Authors: Nurul Jamilah Binti Rosly

Abstract:

The typology of motion must be understood as a change from one location to another. But from a conceptual point of view, motion can also occur in non-spatial contexts associated with human and social factors. Therefore, from the conceptual point of view, the concept of non-spatial motion involves the movement of time, ownership, identity, state, and existence. Accordingly, this study will focus on the lexical as shared, accept, be, store, and exist as the study material. The data in this study were extracted from the Database of Languages and Literature Corpus Database, Malaysia, which was analyzed using semantics and syntax concepts using Conceptual Structure Theory - Ray Jackendoff (2002). Semantic representations are represented in the form of conceptual structures in argument functions that include functions [events], [situations], [objects], [paths] and [places]. The findings show that the mapping of these arguments comprises three main stages, namely mapping the argument structure, mapping the tree, and mapping the role of thematic items. Accordingly, this study will show the representation of non- spatial Malay language areas.

Keywords: arguments, concepts, constituencies, events, situations, thematics

Procedia PDF Downloads 129
234 Bilingualism Contributes to Cognitive Reserve in Parkinson's Disease

Authors: Arrate Barrenechea Garro

Abstract:

Background: Bilingualism has been shown to enhance cognitive reserve and potentially delay the onset of dementia symptoms. This study investigates the impact of bilingualism on cognitive reserve and the age of diagnosis in Parkinson's Disease (PD). Methodology: The study involves 16 non-demented monolingual PD patients and 12 non-demented bilingual PD patients, matched for age, sex, and years of education. All participants are native Spanish speakers, with Spanish as their first language (L1). Cognitive performance is assessed through a neuropsychological examination covering all cognitive domains. Cognitive reserve is measured using the Cognitive Reserve Index Questionnaire (CRIq), while language proficiency is evaluated using the Bilingual Language Profile (BLP). The age at diagnosis is recorded for both monolingual and bilingual patients. Results: Bilingual PD patients demonstrate higher scores on the CRIq compared to monolingual PD patients, with significant differences between the groups. Furthermore, there is a positive correlation between cognitive reserve (CRIq) and the utilization of the second language (L2) as indicated by the BLP. Bilingual PD patients are diagnosed, on average, three years later than monolingual PD patients. Conclusion: Bilingual PD patients exhibit higher levels of cognitive reserve compared to monolingual PD patients, as indicated by the CRIq scores. The utilization of the second language (L2) is positively correlated with cognitive reserve. Bilingual PD patients are diagnosed with PD, on average, three years later than monolingual PD patients. These findings suggest that bilingualism may contribute to cognitive reserve and potentially delay the onset of clinical symptoms associated with PD. This study adds to the existing literature supporting the relationship between bilingualism and cognitive reserve. Further research in this area could provide valuable insights into the potential protective effects of bilingualism in neurodegenerative disorders.

Keywords: bilingualis, cogntiive reserve, diagnosis, parkinson's disease

Procedia PDF Downloads 100
233 The Language of Fliptop among Filipino Youth: A Discourse Analysis

Authors: Bong Borero Lumabao

Abstract:

This qualitative research is a study on the lines of Fliptop talks performed by the Fliptop rappers employing Finnegan’s (2008) discourse analysis. This paper aimed to analyze the phonological, morphological, and semantic features of the fliptop talk, to explore the structures in the lines of Fliptop among Filipino youth, and to uncover the various insights that can be gained from it. The corpora of the study included all the 20 Fliptop Videos downloaded from the Youtube Channel of Fliptop. Results revealed that Fliptop contains phonological features such as assonance, consonance, deletion, lengthening, and rhyming. Morphological features include acronym, affixation, blending, borrowing, code-mixing and switching, compounding, conversion or functional shifts, and dysphemism. Semantics presented the lexical category, meaning, and words used in the fliptop talks. Structure of Fliptop revolves on the personal attack (physical attributes), attack on the bars (rapping skills), extension: family members and friends, antithesis, profane words, figurative languages, sexual undertones, anime characters, homosexuality, and famous celebrities involvement.

Keywords: discourse analysis, fliptop talks, filipino youth, fliptop videos, Philippines

Procedia PDF Downloads 242
232 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 181
231 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 101
230 From the “Movement Language” to Communication Language

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov

Abstract:

The origin of ‘Human Language’ is still a secret and the most interesting subject of historical linguistics. The core element is the nature of labeling or coding the things or processes with symbols and sounds. In this paper, we investigate human’s involuntary Paired Sounds and Shape Production (PSSP) and its contribution to the development of early human communication. Aimed at twenty-six volunteers who provided many physical movements with various difficulties, the research team investigated the natural, repeatable, and paired sounds and shape productions during human activities. The paper claims the involvement of Paired Sounds and Shape Production (PSSP) in the phonetic origin of some modern words and the existence of similarities between elements of PSSP with characters of the classic Latin alphabet. The results may be used not only as a supporting idea for existing theories but to create a closer look at some fundamental nature of the origin of the languages as well.

Keywords: body shape, body language, coding, Latin alphabet, merging method, movement language, movement sound, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 250
229 Words of Peace in the Speeches of the Egyptian President, Abdulfattah El-Sisi: A Corpus-Based Study

Authors: Mohamed S. Negm, Waleed S. Mandour

Abstract:

The present study aims primarily at investigating words of peace (lexemes of peace) in the formal speeches of the Egyptian president Abdulfattah El-Sisi in a two-year span of time, from 2018 to 2019. This paper attempts to shed light not only on the contextual use of the antonyms, war and peace, but also it underpins quantitative analysis through the current methods of corpus linguistics. As such, the researchers have deployed a corpus-based approach in collecting, encoding, and processing 30 presidential speeches over the stated period (23,411 words and 25,541 tokens in total). Further, semantic fields and collocational networkzs are identified and compared statistically. Results have shown a significant propensity of adopting peace, including its relevant collocation network, textually and therefore, ideationally, at the expense of war concept which in most cases surfaces euphemistically through the noun conflict. The president has not justified the action of war with an honorable cause or a valid reason. Such results, so far, have indicated a positive sociopolitical mindset the Egyptian president possesses and moreover, reveal national and international fair dealing on arising issues.

Keywords: CADS, collocation network, corpus linguistics, critical discourse analysis

Procedia PDF Downloads 155
228 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 191
227 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 142
226 Effects of Folic Acid, Alone or in Combination with Other Nutrients on Homocysteine Level and Cognitive Function in Older People: A Systematic Review

Authors: Jiayan Gou, Kexin He, Xin Zhang, Fei Wang, Liuni Zou

Abstract:

Background: Homocysteine is a high-risk factor for cognitive decline, and folic acid supplementation can lower homocysteine levels. However, current clinical research results are inconsistent, and the effects of folic acid on homocysteine levels and cognitive function in older people are inconsistent. Objective: The objective of this study is to systematically evaluate the effects of folic acid alone or in combination with other nutrients on homocysteine levels and cognitive function in older adults. Methods: Systematic searches were conducted in five databases, including PubMed, Embase, the Cochrane Library, Web of Science, and CINAHL, from inception to June 1, 2023. Randomized controlled trials were included investigating the effects of folic acid alone or in combination with other nutrients on cognitive function in older people. Results: 17 articles were included, with six focusing on the effects of folic acid alone and 11 examining folic acid in combination with other nutrients. The study included 3,100 individuals aged 60 to 83.2 years, with a relatively equal gender distribution (approximately 51.82% male). Conclusion: Folic acid alone or combined with other nutrients can effectively lower homocysteine level and improve cognitive function in patients with mild cognitive impairment. But for patients with Alzheimer's disease and dementia, the intervention only can reduce the homocysteine level, but the improvement in cognitive function is not significant. In healthy older people, high baseline homocysteine levels (>11.3 μmol/L) and good ω-3 fatty acid status (>590 μmol/L) can enhance the improvement effect of folic acid on cognitive function. This trial has been registered on PROSPERO as CRD42023433096.

Keywords: B-complex vitamins, cognitive function, folic acid, homocysteine

Procedia PDF Downloads 71
225 Designing Garments Ergonomically to Improve Life Quality of Elderly People

Authors: Nagda Ibrahim Mady, Shimaa Mohamed Atiha

Abstract:

In light of actual needs of elderly people and the changes that accompany age in eyesight, hearing, dexterity, mobility, and memory which make aged people unable to carry out the simplest living affairs especially clothing demands. These needs are almost neglected in the current clothing market obligate aged peoples to wear the available choices without any consideration to their actual desires and needs. Fashion designer has gained many experiences that can gather between ergonomics and stages of fashion designing process. Fashion designer can determine the actual needs of aged people and reply these needs with designs that can achieve Improvement to the life quality of aged people besides maintaining good appearance. Thus Fashion designer can help elderly people to avoid negative impacts age leaves on them, either it is psychological or kinetic or that of dementia. Ergonomics in clothing is considered the tools and mechanisms that are used to fit aged people satisfactions supporting them to improve their living using the least time and effort. Providing the elderly with comfort besides maintaining good appearance that can make self–confidence besides independence. From this point of view the research is looking forward to improve the life of aged people through addressing functional clothes that can make elderly independent in the wearing process. Providing in these designs comfort, quality, and practicality and economic cost. Suggesting the suitable fabrics and materials and applying it to the designs to help the elderly perform their daily living customs. Reaching the successful designs that can be acceptable to specialists and to consumers whom they confirm: it supplies their clothing needs and provides the atheistic and functional performance and therefore it gives them better life.

Keywords: ergonomic, design garments, elderly people, life quality

Procedia PDF Downloads 567
224 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 169
223 The Influence of Screen Translation on Creative Audiovisual Writing: A Corpus-Based Approach

Authors: John D. Sanderson

Abstract:

The popularity of American cinema worldwide has contributed to the development of sociolects related to specific film genres in other cultural contexts by means of screen translation, in many cases eluding norms of usage in the target language, a process whose result has come to be known as 'dubbese'. A consequence for the reception in countries where local audiovisual fiction consumption is far lower than American imported productions is that this linguistic construct is preferred, even though it differs from common everyday speech. The iconography of film genres such as science-fiction, western or sword-and-sandal films, for instance, generates linguistic expectations in international audiences who will accept more easily the sociolects assimilated by the continuous reception of American productions, even if the themes, locations, characters, etc., portrayed on screen may belong in origin to other cultures. And the non-normative language (e.g., calques, semantic loans) used in the preferred mode of linguistic transfer, whether it is translation for dubbing or subtitling, has diachronically evolved in many cases into a status of canonized sociolect, not only accepted but also required, by foreign audiences of American films. However, a remarkable step forward is taken when this typology of artificial linguistic constructs starts being used creatively by nationals of these target cultural contexts. In the case of Spain, the success of American sitcoms such as Friends in the 1990s led Spanish television scriptwriters to include in national productions lexical and syntactical indirect borrowings (Anglicisms not formally identifiable as such because they include elements from their own language) in order to target audiences of the former. However, this commercial strategy had already taken place decades earlier when Spain became a favored location for the shooting of foreign films in the early 1960s. The international popularity of the then newly developed sub-genre known as Spaghetti-Western encouraged Spanish investors to produce their own movies, and local scriptwriters made use of the dubbese developed nationally since the advent of sound in film instead of using normative language. As a result, direct Anglicisms, as well as lexical and syntactical borrowings made up the creative writing of these Spanish productions, which also became commercially successful. Interestingly enough, some of these films were even marketed in English-speaking countries as original westerns (some of the names of actors and directors were anglified to that purpose) dubbed into English. The analysis of these 'back translations' will also foreground some semantic distortions that arose in the process. In order to perform the research on these issues, a wide corpus of American films has been used, which chronologically range from Stagecoach (John Ford, 1939) to Django Unchained (Quentin Tarantino, 2012), together with a shorter corpus of Spanish films produced during the golden age of Spaghetti Westerns, from una tumba para el sheriff (Mario Caiano; in English lone and angry man, William Hawkins) to tu fosa será la exacta, amigo (Juan Bosch, 1972; in English my horse, my gun, your widow, John Wood). The methodology of analysis and the conclusions reached could be applied to other genres and other cultural contexts.

Keywords: dubbing, film genre, screen translation, sociolect

Procedia PDF Downloads 171
222 Corpus-Based Description of Core English Nouns of Pakistani English, an EFL Learner Perspective at Secondary Level

Authors: Abrar Hussain Qureshi

Abstract:

Vocabulary has been highlighted as a key indicator in any foreign language learning program, especially English as a foreign language (EFL). It is often considered a potential tool in foreign language curriculum, and its deficiency impedes successful communication in the target language. The knowledge of the lexicon is very significant in getting communicative competence and performance. Nouns constitute a considerable bulk of English vocabulary. Rather, they are the bones of the English language and are the main semantic carrier in spoken and written discourse. As nouns dominate the bulk of the English lexicon, their role becomes all the more potential. The undertaken research is a systematic effort in this regard to work out a list of highly frequent list of Pakistani English nouns for the EFL learners at the secondary level. It will encourage autonomy for the EFL learners as well as will save their time. The corpus used for the research has been developed locally from leading English newspapers of Pakistan. Wordsmith Tools has been used to process the research data and to retrieve word list of frequent Pakistani English nouns. The retrieved list of core Pakistani English nouns is supposed to be useful for English language learners at the secondary level as it covers a wide range of speech events.

Keywords: corpus, EFL, frequency list, nouns

Procedia PDF Downloads 103
221 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
220 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China

Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin

Abstract:

This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.

Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns

Procedia PDF Downloads 393
219 Obtaining Norms for Arabic Translated Version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Battery in Normal Elderly Omanis Attending a Tertiary Hospital in Oman

Authors: Ammar Alobaidy, Lamees Alsawafi, Malak Almawali, Balqees Alabri, Hajer Alhamrashdi

Abstract:

Background: There is scarce data in the literature concerning the use of Arabic version neuron psychological cognitive tests in the geriatric age group of the Omani population. Objectives: Our aim is to obtain norms for normal elderly Omanis assessed by The Consortium to Establish a Registry for Alzheimer's disease (CERAD) neuro psychological battery and to compare these norms with other studies in the literature. Methods: 84 attendants and visitors of in-patients at Sultan Qaboos University Hospital, elder than 55 years, were interviewed. All participants were assessed by Dementia Rating Scale & Geriatric Depression Scale to ensure the integrity of their activities of daily living and the absence of depression, respectively. The performance of all participants in the CERAD battery was rated by a single rater to optimize the inter-rater reliability. Results: The cut-point for average performance in CERAD battery is dependent on the age, sex, and level of education and cannot be set as a single cut-point for all elderly Omanis. Conclusion: This study has shown the effect of age, sex, and level of education on the cognitive performance of normal elderly Omanis. The normative data obtained from this study can be utilized to differentiate between the cognitive decline of normal aging and the cognitive impairment due to various neuro cognitive disorders in the elderly Omanis, and probably culturally similar Arabic speaking communities.

Keywords: CERAD, neuropsychological battery, normal aging, elderly Omanis

Procedia PDF Downloads 371