Search results for: non prismatic compound channel
1930 The Possible Role of the Endoneurial Fibroblast-like Cells in Resolution of the Endoneurial Edema Following Nerve Crush Injury
Authors: Faris M. Altaf, Abdullah M Elkeshy
Abstract:
Forty-two albino male rats aged between 30 and 40 days (weighted 200 g to 250 g) were used in the present study. The left sural nerves of 36 rats were subjected to crush injury at 1 to 6 weeks intervals using 6 animals at each interval. The right and left sural nerves of the rest 6 rats were used as a control. After 2 weeks of the crush injury, the endoneurium showed channel-like spaces that were lined by the fibroblast-like cells and collagen bundles. These channels contained degenerated myelin and were connected with the perivascular and subperineurial spaces. Some of the flattened fibroblast-like cells were arranged in several layers in the subperineurial and perivascular spaces, forming barrier-like cellular sheets localizing the endoneurial edema in these spaces. Fibroblast-like cells also wrapped the regenerating nerve fibers by their branching cytoplasmic processes. At the end of the third week, the flattened fibroblasts formed nearly continuous sheets in the subperineurial and perivascular spaces. Macrophages were frequently noticed between these cellular barrier-like sheets and in the subperineurial and perivascular spaces. Conclusion: it could be concluded that the endoneurial fibroblast-like cells form barrier-like cellular sheets that localized the endoneurial edema in the subperineurial and perivascular spaces and create also the endoneurial channel-like spaces containing degenerated myelin and endoneurial edema helping the resolution of such edema.Keywords: sural nerve, endoneurial fibroblast-like cells, endoneurial edema, barrier-like and channel-like spaces
Procedia PDF Downloads 3441929 Investigation of Flow Characteristics of Trapezoidal Side Weir in Rectangular Channel for Subcritical Flow
Authors: Malkhan Thakur, P. Deepak Kumar, P. K. S. Dikshit
Abstract:
In recent years, the hydraulic behavior of side weirs has been the subject of many investigations. Most of the studies have been in connection with specific problems and have involved models. This is perhaps understandable, since a generalized treatment is made difficult by the large number of possible variables to be used to define the problem. A variety of empirical head discharge relationships have been suggested for side weirs. These empirical approaches failed to adequately consider the actual situation, and produced equations applicable only in circumstances virtually identical to those of the experiment. The present investigation is targeted to study to a greater depth the effect of different trapezium angles of a trapezoidal side weir and study of water surface profile in spatially varied flow with decreasing discharge maintaining the main channel flow subcritical. On the basis of experiment, the relationship between upstream Froude number and coefficient of discharge has been established. All the characteristics of spatially varied flow with decreasing discharge have been studied and subsequently formulated. The scope of the present investigation has been basically limited to a one-dimensional model of flow for the purpose of analysis. A formulation has been derived using the theoretical concept of constant specific energy. Coefficient of discharge has been calculated and experimental results were presented.Keywords: weirs, subcritical flow, rectangular channel, trapezoidal side weir
Procedia PDF Downloads 2701928 Outdoor Visible Light Communication Channel Modeling under Fog and Smoke Conditions
Authors: Véronique Georlette, Sebastien Bette, Sylvain Brohez, Nicolas Point, Veronique Moeyaert
Abstract:
Visible light communication (VLC) is a communication technology that is part of the optical wireless communication (OWC) family. It uses the visible and infrared spectrums to send data. For now, this technology has widely been studied for indoor use-cases, but it is sufficiently mature nowadays to consider the outdoor environment potentials. The main outdoor challenges are the meteorological conditions and the presence of smoke due to fire or pollutants in urban areas. This paper proposes a methodology to assess the robustness of an outdoor VLC system given the outdoor conditions. This methodology is put into practice in two realistic scenarios, a VLC bus stop, and a VLC streetlight. The methodology consists of computing the power margin available in the system, given all the characteristics of the VLC system and its surroundings. This is done thanks to an outdoor VLC communication channel simulator developed in Python. This simulator is able to quantify the effects of fog and smoke thanks to models taken from environmental and fire engineering scientific literature as well as the optical power reaching the receiver. These two phenomena impact the communication by increasing the total attenuation of the medium. The main conclusion drawn in this paper is that the levels of attenuation due to fog and smoke are in the same order of magnitude. The attenuation of fog being the highest under the visibility of 1 km. This gives a promising prospect for the deployment of outdoor VLC uses-cases in the near future.Keywords: channel modeling, fog modeling, meteorological conditions, optical wireless communication, smoke modeling, visible light communication
Procedia PDF Downloads 1511927 Current of Drain for Various Values of Mobility in the Gaas Mesfet
Authors: S. Belhour, A. K. Ferouani, C. Azizi
Abstract:
In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.Keywords: analytical, gallium arsenide, MESFET, mobility, models
Procedia PDF Downloads 751926 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-On Exposure to Carbon Tetrachloride
Authors: Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Zobov, Vladimir Reznik
Abstract:
Among hepatic pyrimidine used as a means of stimulating protein synthesis and recovery of liver cells in her damaged toxic and infectious etiology. When an experimental toxic hepatitis hepatoprotective activity detected some pyrimidine derivatives. There are literature data on oksimetiluratcila hepatoprotective effect. For analogs of pyrimidine nucleobases - drugs Methyluracilum pentoxy and hepatoprotective effect of weakly expressed. According to the American scientists broad spectrum of biological activity, including hepatoprotective properties, have a 2,4-dioxo-5-arilidenimino uracils. Influenced Xymedon medicinal preparation (1- (beta-hydroxyethyl) -4,6-dimethyl-1,2-dihydro-2-oksopirimidin) developed as a means of stimulating the regeneration of tissue revealed increased activity of microsomal oxidases human liver. In studies on the model of toxic liver damage in rats have shown hepatoprotective effect xymedon and stimulating its impact on the recovery of the liver tissue. Hepatoprotective properties of the new compound in the series of pyrimidine derivatives L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropirimidine-2-one synthesized on the basis Xymedon preparation were firstly investigated on rats under the carbon tetrachloride action. It was shown the differences of biochemical parameters from the reference value and severity of structural-morphological liver violations decreased in comparison with control group under the influence of the compound injected before exposure carbon tetrachloride. Hepatoprotective properties of the investigated compound were more pronounced in comparison with Xymedon.Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon
Procedia PDF Downloads 4271925 Synthesis, Characterization, and Properties Study of New Magnetic Materials
Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub
Abstract:
We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt
Procedia PDF Downloads 4511924 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding
Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang
Abstract:
In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding
Procedia PDF Downloads 1501923 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes
Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif
Abstract:
Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening
Procedia PDF Downloads 981922 Femtocell Stationed Flawless Handover in High Agility Trains
Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga
Abstract:
The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS
Procedia PDF Downloads 4741921 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita
Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall
Abstract:
The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT
Procedia PDF Downloads 3281920 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications
Authors: Mike R. Bambach
Abstract:
Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.Keywords: channel sections, natural fibre composites, residential stud walls, structural composites
Procedia PDF Downloads 3141919 Red Green Blue Image Encryption Based on Paillier Cryptographic System
Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson
Abstract:
In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier
Procedia PDF Downloads 2391918 Bioassay Guided Isolation of Cytotoxic and Antimicrobial Components from Ethyl Acetate Extracts of Cassia sieberiana D.C. (Fabaceae)
Authors: Sani Abubakar, Oumar Al-Mubarak Adoum
Abstract:
The leaves extracts of Cassia sieberiana D. C. were screened for antimicrobial bioassay against Staphylococcus aureus, Salmonella typhi, and Escherichia coli and cytotoxicity using Brine Shrimp Test (BST). The crude ethanol extract, Chloroform soluble fraction, aqueous soluble fraction, ethyl acetate soluble fraction, methanol soluble fraction, and n-hexane soluble fraction were tested against antimicrobial and cytotoxicity. The Ethyl acetate fraction obtained proved to be most active in inducing complete lethality at minimum doses in BST and also active on Salmonella typhi. The bioactivity result was used to guide the column chromatography, which led to the isolation of pure compound CSB-8, which was found active in the BST with an LC₅₀ value of 34(722-182)µg/ml and showed remarkable activity on Salmonella typhi (zone of inhibition 25mm) at 10,000µg/ml. The ¹H-NMR, ¹³C NMR, FTIR, and GC-MS spectra of the compound suggested the proposed structure to be 2-pentadecanone.Keywords: antimicrobial bioassay, cytotoxicity, column chromatagraphy, Cassia sieberiana D.C.
Procedia PDF Downloads 481917 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks
Authors: Bayram Sahin, Baris Gezdirici, Murat Ceylan, Ibrahim Ates
Abstract:
In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.Keywords: forced convection, heat transfer enhancement, lattice geometric heat sinks, pressure drop
Procedia PDF Downloads 1911916 A Verification Intellectual Property for Multi-Flow Rate Control on Any Single Flow Bus Functional Model
Authors: Pawamana Ramachandra, Jitesh Gupta, Saranga P. Pogula
Abstract:
In verification of high volume and complex packet processing IPs, finer control of flow management aspects (for example, rate, bits/sec etc.) per flow class (or a virtual channel or a software thread) is needed. When any Software/Universal Verification Methodology (UVM) thread arbitration is left to the simulator (e.g., Verilog Compiler Simulator (VCS) or Incisive Enterprise Simulator core simulation engine (NCSIM)), it is hard to predict its pattern of resulting distribution of bandwidth by the simulator thread arbitration. In many cases, the patterns desired in a test scenario may not be accomplished as the simulator might give a different distribution than what was required. This can lead to missing multiple traffic scenarios, specifically deadlock and starvation related. We invented a component (namely Flow Manager Verification IP) to be intervening between the application (test case) and the protocol VIP (with UVM sequencer) to control the bandwidth per thread/virtual channel/flow. The Flow Manager has knobs visible to the UVM sequence/test to configure the required distribution of rate per thread/virtual channel/flow. This works seamlessly and produces rate stimuli to further harness the Design Under Test (DUT) with asymmetric inputs compared to the programmed bandwidth/Quality of Service (QoS) distributions in the Design Under Test.Keywords: flow manager, UVM sequencer, rated traffic generation, quality of service
Procedia PDF Downloads 1011915 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes
Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi
Abstract:
An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.Keywords: nano fluids, heat transfer, flattend tube, transport phenomena
Procedia PDF Downloads 4341914 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka
Abstract:
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.Keywords: alpha waves, antidepressant, treatment outcome, wavelet
Procedia PDF Downloads 3161913 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia
Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.
Abstract:
High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layersKeywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water
Procedia PDF Downloads 731912 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field
Authors: Yue Yan, Chang Nyung Kim
Abstract:
The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic
Procedia PDF Downloads 4961911 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel
Authors: Selami Şahin
Abstract:
In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication
Procedia PDF Downloads 4011910 A CPS Based Design of Industrial Ecosystems
Authors: Maryam Shayan
Abstract:
Chemical Process Simulation (CPS) software has been generally utilized by chemical (process) designers to outline, test, advance, and coordinate process plants. It is relied upon that modern scientists to bring these same critical thinking advantages to the outline and operation of industrial ecosystems can utilize CPS. This paper gives modern environment researchers and experts with a prologue to CPS and a review of compound designing configuration standards. The paper highlights late research demonstrating that CPS can be utilized to model modern industrial ecosystems, and talks about the advantages of utilizing CPS to address a portion of the specialized difficulties confronting organizations partaking in an industrial ecosystem. CPS can be utilized to (i) quantitatively assess and analyze the potential ecological and monetary advantages of material and vitality linkages; (ii) unravel general plan, retrofit, or operational issues; (iii) help to distinguish complex and frequently irrational arrangements; and (iv) assess imagine a scenario in which situations. CPS ought to be a valuable expansion to the mechanical environment tool stash.Keywords: chemical process simulation (CPS), process plants, industrial ecosystems, compound designing
Procedia PDF Downloads 2811909 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent
Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya
Abstract:
Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.Keywords: sol-gel, allethrin, TEOS, biochemistry
Procedia PDF Downloads 3771908 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement
Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh
Abstract:
This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.Keywords: DNA, nanopore, amplifier, ADC, multichannel
Procedia PDF Downloads 4541907 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 1611906 Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process
Authors: M. A. Alhubail, A. I. Alateyah, D. Alenezi, B. Aldousiri
Abstract:
In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated.Keywords: optimum parameters, injection moulding, conformal cooling channels, cycle time
Procedia PDF Downloads 2281905 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris
Authors: Mthokozisi Simelane
Abstract:
Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate
Procedia PDF Downloads 1991904 Effect of Using Baffles Inside Spiral Micromixer
Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons
Abstract:
Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.Keywords: CFD, micromixer, microfluidics, spiral, reynolds number
Procedia PDF Downloads 911903 Facile Synthesis of Novel Substituted Aryl-Thiazole (SAT) Analogs via One-Pot Multicomponent Reaction as Potent Cytotoxic Agents against Cancer Cell Lines
Authors: Salma Mirza, Syeda Asma Naqvi, Khalid Mohammed Khan, M. Iqbal Choudhary
Abstract:
In this study twenty-five (25) newly synthesized compounds substituted aryl thiazoles (SAT) 1-25 were synthesized, and in vitro cytotoxicity of these compounds was evaluated against four cancer cell lines namely, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal), and, HeLa (cervical) and compared with the standard anticancer drug doxorubicin with IC50 value of 1.56 ± 0.05 μM. Among them, compounds 1, 4-8 and 19 were found to be active against all four cell lines. Compound 20 was found to be selectively active against MCF7 cells with IC50 value of 40.21 ± 4.15 µM, whereas compound 19 was active against only MCF7 and HeLa cells with IC50 values of 46.72 ± 1.8 and 19.86 ± 0.11 μM, respectively. These results suggest that aryl thiazoles 1 and 4 deserve to be investigated further in vivo as anti-cancer agents.Keywords: anticancer agents, breast cancer cell lines (MCF7, MDA-MB-231), colorectal cancer cell line (HCT-116), cervical cancer cell line (HeLa), Thiazole derivatives
Procedia PDF Downloads 3041902 Performance Analysis of Double Gate FinFET at Sub-10NM Node
Authors: Suruchi Saini, Hitender Kumar Tyagi
Abstract:
With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.Keywords: current on-off ratio, FinFET, short-channel effects, transconductance
Procedia PDF Downloads 611901 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 124