Search results for: mechanical engineering courses
6725 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites
Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt
Abstract:
Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship
Procedia PDF Downloads 4106724 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1406723 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability
Authors: S. Zhang, L. Zhang, X. Chen
Abstract:
Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.Keywords: failure probability, FRP, reliability, statistical correlation
Procedia PDF Downloads 1596722 Post-Secondary Faculty Treatment of Non-Native English-Speaking Student Writing Errors in Academic Subject Courses
Authors: Laura E. Monroe
Abstract:
As more non-native English-speaking students enroll in English-medium universities, even more faculty will instruct students who are unprepared for the rigors of post-secondary academic writing in English. Many faculty members lack training and knowledge regarding the assessment of non-native English-speaking students’ writing, as well as the ability to provide effective feedback. This quantitative study investigated the possible attitudinal factors, including demographics, which might affect faculty preparedness and grading practices for both native and non-native English-speaking students’ academic writing and plagiarism, as well as the reasons faculty do not deduct points from both populations’ writing errors. Structural equation modeling and SPSS Statistics were employed to analyze the results of a faculty questionnaire disseminated to individuals who had taught non-native English-speaking students in academic subject courses. The findings from this study illustrated that faculty’s native language, years taught, and institution type were significant factors in not deducting points for academic writing errors and plagiarism, and the major reasons for not deducting points for errors were that faculty had too many students to grade, not enough training in assessing student written errors and plagiarism and that the errors and plagiarism would have taken too long to explain. The practical implications gleaned from these results can be applied to most departments in English-medium post-secondary institutions regarding faculty preparedness and training in student academic writing errors and plagiarism, and recommendations for future research are given for similar types of preparation and guidance for post-secondary faculty, regardless of degree path or academic subject.Keywords: assessment, faculty, non-native English-speaking students, writing
Procedia PDF Downloads 1496721 Experimental Study on Post-Fire Mechanical Properties of S235 Steel
Authors: Mahyar Maali, Merve Sagiroglu, Mahmut Kilic, Abdulkadir Cuneyt Aydin
Abstract:
In order to evaluate the residual strength of S235 (St37) steel structures after the fire, an experimental program was undertaken to investigate the post-fire mechanical properties. Tensile coupons taken from S235 sheets were exposed to varying temperatures as 200°C, 400°C, 600°C, and 800 °C. The samples were then allowed to cool down to ambient temperature before they were tested to failure. To obtain the mechanical properties of steels; tensile tests are performed, and the post-fire stress-strain curves are evaluated. The microstructures of the heat-treated specimens were examined by Scanning Electron Microscope (SEM). It is seen that morphology and size of the precipitates in the specimens change, as the heat increases. The modulus of elasticity decreases, and deformation increases with temperature. Energy dissipation decreases due to lower stress according to the stress-strain curves of the specimens. Especially, the mechanical properties were decreased compared with the pre-fire ones. As a result of the post-fire and pre-fire behavior of S235, a set of equations is evaluated to predict the mechanical properties after the fire. These types of equations may allow the structural and/or fire engineers to predict accurately the post-fire behavior of the buildings constructed with S235 type steel.Keywords: post-fire behavior, stress-strain curves, experimental study, S235 steel
Procedia PDF Downloads 3496720 Improvement plan for Integrity of Intensive Care Unit Patients Withdrawn from Life-Sustaining Medical Care
Authors: Shang-Sin Shiu, Shu-I Chin, Hsiu-Ju Chen, Ru-Yu Lien
Abstract:
The Hospice and Palliative Care Act has undergone three revisions, making it less challenging for terminal patients to withdraw life support systems. However, the adequacy of care before withdraw is a crucial factor in end-of-life medical treatment. The author observed that intensive care unit (ICU) nursing staff often rely on simple flowcharts or word of mouth, leading to inadequate preparation and failure to meet patient needs before withdraw. This results in confusion or hesitation among those executing the process. Therefore, there is a motivation to improve the withdraw of patient care processes, establish standardized procedures, ensure the accuracy of removal execution, enhance end-of-life care self-efficacy for nursing staff, and improve the overall quality of care. The investigation identified key issues: the lack of applicable guidelines for ICU care for withdraw from life-sustaining, insufficient education and training on withdraw and end-of-life care, scattered locations of withdraw-related tools, and inadequate self-efficacy in withdraw from life-sustaining care. Solutions proposed include revising withdraw care processes and guidelines, integrating tools and locations, conducting educational courses, and forming support groups. After the project implementation, the accuracy of removal cognition improved from 78% to 96.5%, self-efficacy in end-of-life care after removal increased from 54.7% to 93.1%, and the correctness of care behavior progressed from 27.7% to 97.8%. It is recommended to regularly conduct courses on removing life support system care and grief consolation to enhance the quality of end-of-life care.Keywords: the intensive care unit (ICU) patients, nursing staff, withdraw life support systems, self-efficacy
Procedia PDF Downloads 516719 The Driving Force for Taiwan Social Innovation Business Model Transformation: A Case Study of Social Innovation Internet Celebrity Training Project
Authors: Shih-Jie Ma, Jui-Hsu Hsiao, Ming-Ying Hsieh, Shin-Yan Yang, Chun-Han Yeh, Kuo-Chun Su
Abstract:
In Taiwan, social enterprises and non-profit organizations (NPOs) are not familiar with innovative business models, such as live streaming. In 2019, a brand new course called internet celebrity training project is introduced to them by the Social Innovation Lab. The Goal of this paper is to evaluate the effect of this project, to explore the role of new technology (internet live stream) in business process management (BPM), and to analyze how live stream programs can assist social enterprises in creating new business models. Social Innovation, with the purpose to solve social issues in innovative ways, is one of the most popular topics in the world. Social Innovation Lab was established in 2017 by Executive Yuan in Taiwan. The vision of Social Innovation Lab is to exploit technology, innovation and experimental methods to solve social issues, and to maximize the benefits from government investment. Social Innovation Lab aims at creating a platform for both supply and demand sides of social issues, to make social enterprises and start-ups communicate with each other, and to build an eco-system in which stakeholders can make a social impact. Social Innovation Lab keeps helping social enterprises and NPOs to gain better publicity and to enhance competitiveness by facilitating digital transformation. In this project, Social Innovation Lab exerted the influence of social media such as YouTube and Facebook, to make social enterprises and start-ups adjust their business models by using the live stream of social media, which becomes one of the tools to expand their market and diversify their sales channels. Internet live stream training courses were delivered in different regions of Taiwan in 2019, including Taitung, Taichung, Kaohsiung and Hualien. Through these courses, potential groups and enterprises were cultivated to become so-called internet celebrities. With their concern about social issues in mind, these internet celebrities know how to manipulate social media to make a social impact in different fields, such as aboriginal people, food and agriculture, LOHAS (Lifestyles of Health and Sustainability), environmental protection and senior citizens. Participants of live stream training courses in Taiwan are selected to take in-depth interviews and questionnaire surveys. Results indicate that the digital transformation process of social enterprises and NPOs can be successful by implementing business process reengineering, a significant change made by social innovation internet celebrities. Therefore, this project can be the new driving force to facilitate the business model transformation in Taiwan.Keywords: business process management, digital transformation, live stream, social innovation
Procedia PDF Downloads 1466718 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils
Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom
Abstract:
Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.Keywords: electrical resistivity, clayey soil, physical properties, shear properties
Procedia PDF Downloads 2946717 Students' Perceptions of Assessment and Feedback in Higher Education
Authors: Jonathan Glazzard
Abstract:
National student satisfaction data in England demonstrate that undergraduate students are less satisfied overall with assessment and feedback than other aspects of their higher education courses. Given that research findings suggest that high-quality feedback is a critical factor associated with academic achievement, it is important that feedback enables students to demonstrate improved academic achievement in their subsequent assessments. Given the growing importance of staff-student partnerships in higher education, this research examined students’ perceptions of assessment and feedback in one UK university. Students’ perceptions were elicited through the use of a university-wide survey which was completed by undergraduate students. In addition, three focus groups were used to provide qualitative student perception data across the three university Facilities. The data indicate that whilst students valued detailed feedback on their work, less detailed feedback could be compensated for by the development of pre-assessment literacy skills which are front-loaded into courses. Assessment literacy skills valued by students included the use of clear assessment criteria and assignment briefings which enabled students to fully understand the assessment task. Additionally, students valued assessment literacy pre-assessment tasks which enabled them to understand the standards which they were expected to achieve. Students valued opportunities for self and peer assessment prior to the final assessment and formative assessment feedback which matched the summative assessment feedback. Students also valued dialogic face-to-face feedback after receiving written feedback Above all, students valued feedback which was particular to their work and which gave recognition for the effort they had put into completing specific assessments. The data indicate that there is a need for higher education lecturers to receive systematic training in assessment and feedback which provides a comprehensive grounding in pre-assessment literacy skills.Keywords: formative assessment, summative assessment, feedback, marking
Procedia PDF Downloads 3226716 Thermal Ageing Effect on Mechanical Behavior of Polycarbonate
Authors: H. Babou, S. Ridjla, B. Amerate, R. Ferhoum, M. Aberkane
Abstract:
This work is devoted to the experimental study of thermal ageing effect on the mechanical and micro structural behavior of polycarbonate (PC). A simple compression tests, micro hardness and an IRTF analysis were completed in order to characterize the response of material on specimens after ageing at a temperature of order 100 C° and for serval maintain duration 72, 144 and 216 hours. These investigations showed a decrease of the intrinsic properties of polycarbonate (Young modulus, yield stress, etc.); the superposition of spectra IRTF shows that the intensity of chemical connections C=C, C-O, CH3 and C-H are influenced by the duration of thermal ageing; in addition, an increase of 30 % of micro hardness was detected after 216 hour of ageing.Keywords: amorphous polymer, polycarbonate, mechanical behavior, compression test, thermal ageing
Procedia PDF Downloads 4096715 Fire Performance of Fly Ash Concrete with Pre-Fire Load
Authors: Kunjie Fan
Abstract:
Fly ash has been widely used as supplemental cementitious material in concrete for decades, especially in the ready-mixed concrete industry. Addition of fly ash not only brings economic and environmental benefits but also improves the engineering properties of concrete. It is well known that the pre-fire load has significant impacts on mechanical properties of concrete at high temperatures, however, the fire performance of stressed fly ash concrete is still not clear. Therefore, an apparatus was specially designed for testing “hot” mechanical properties of fly ash concrete with different heating-loading regimes. Through the experimental research, the mechanical properties, including compressive strength, peak strain, elastic modulus, complete stress-strain relationship, and transient thermal creep of fly ash concrete under uniaxial compression at elevated temperatures, have been investigated. It was found that the compressive strength and the elastic modulus increase with the load level, while the peak strain decreases with the applied stress level. In addition, 25% replacement of OPC with FA in the concrete mitigated the deterioration of the compressive strength, the development of transient thermal creep, and the nonlinearity of stress-strain response at elevated temperatures but hardly influenced the value of the elastic modulus and the peak strain. The applicability of Eurocode EN1992-1-2 to normal strength concrete with 25% replacement of fly ash has been verified to be safe. Based on the experimental analysis, an advanced constitutive model for stressed fly ash concrete at high temperatures was proposed.Keywords: fire performance, fly ash concrete, pre-fire load, mechanical properties, transient thermal creep
Procedia PDF Downloads 856714 Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy
Authors: A. P. Srivastava, D. Srivastava, D. J. Browne
Abstract:
Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed.Keywords: DMA, glass transition, metallic glass, thermoplastic forming
Procedia PDF Downloads 2956713 Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide
Authors: Behrooz Ghasemi, Bahram Sharijian
Abstract:
Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix.Keywords: Al2O3/Mo, nanocomposites, mechanochemical, mechanical milling
Procedia PDF Downloads 3686712 The Relationships among Self-Efficacy, Critical Thinking and Communication Skills Ability in Oncology Nurses for Cancer Immunotherapy in Taiwan
Authors: Yun-Hsiang Lee
Abstract:
Cancer is the main cause of death worldwide. With advances in medical technology, immunotherapy, which is a newly developed advanced treatment, is currently a crucial cancer treatment option. For better quality cancer care, the ability to communicate and critical thinking plays a central role in clinical oncology settings. However, few studies have explored the impact of communication skills on immunotherapy-related issues and their related factors. This study was to (i) explore the current status of communication skill ability for immunotherapy-related issues, self-efficacy for immunotherapy-related care, and critical thinking ability; and (ii) identify factors related to communication skill ability. This is a cross-sectional study. Oncology nurses were recruited from the Taiwan Oncology Nursing Society, in which nurses came from different hospitals distributed across four major geographic regions (North, Center, South, East) of Taiwan. A total of 123 oncology nurses participated in this study. A set of questionnaires were used for collecting data. Communication skill ability for immunotherapy issues, self-efficacy for immunotherapy-related care, critical thinking ability, and background information were assessed in this survey. Independent T-test and one-way ANOVA were used to examine different levels of communication skill ability based on nurses having done oncology courses (yes vs. no) and education years (< 1 year, 1-3 years, and > 3 years), respectively. Spearman correlation was conducted to understand the relationships between communication skill ability and other variables. Among the 123 oncology nurses in the current study, the majority of them were female (98.4%), and most of them were employed at a hospital in the North (46.8%) of Taiwan. Most of them possessed a university degree (78.9%) and had at least 3 years of prior work experience (71.7%). Forty-three of the oncology nurses indicated in the survey that they had not received oncology nurses-related training. Those oncology nurses reported moderate to high levels of communication skill ability for immunotherapy issues (mean=4.24, SD=0.7, range 1-5). Nurses reported moderate levels of self-efficacy for immunotherapy-related care (mean=5.20, SD=1.98, range 0-10) and also had high levels of critical thinking ability (mean=4.76, SD=0.60, range 1-6). Oncology nurses who had received oncology training courses had significantly better communication skill ability than those who had not received oncology training. Oncology nurses who had higher work experience (1-3 years, or > 3 years) had significantly higher levels of communication skill ability for immunotherapy-related issues than those with lower work experience (<1 year). When those nurses reported better communication skill ability, they also had significantly better self-efficacy (r=.42, p<.01) and better critical thinking ability (r=.47, p<.01). Taken altogether, courses designed to improve communication skill ability for immunotherapy-related issues can make a significant impact in clinical settings. Communication skill ability for oncology nurses is the major factor associated with self-efficacy and critical thinking, especially for those with lower work experience (< 1 year).Keywords: communication skills, critical thinking, immunotherapy, oncology nurses, self-efficacy
Procedia PDF Downloads 1056711 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting
Authors: Ala Abobakr Abdulhafidh Al-Dubai
Abstract:
Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).
Procedia PDF Downloads 606710 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications
Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos
Abstract:
Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys
Procedia PDF Downloads 1746709 Exploring 3-D Virtual Art Spaces: Engaging Student Communities Through Feedback and Exhibitions
Authors: Zena Tredinnick-Kirby, Anna Divinsky, Brendan Berthold, Nicole Cingolani
Abstract:
Faculty members from The Pennsylvania State University, Zena Tredinnick-Kirby, Ph.D., and Anna Divinsky are at the forefront of an innovative educational approach to improve access in asynchronous online art courses. Their pioneering work weaves virtual reality (VR) technologies to construct a more equitable educational experience for students by transforming their learning and engagement. The significance of their study lies in the need to bridge the digital divide in online art courses, making them more inclusive and interactive for all distance learners. In an era where conventional classroom settings are no longer the sole means of instruction, Tredinnick-Kirby and Divinsky harness the power of instructional technologies to break down geographical barriers by incorporating an interactive VR experience that facilitates community building within an online environment transcending physical constraints. The methodology adopted by Tredinnick-Kirby, and Divinsky is centered around integrating 3D virtual spaces into their art courses. Spatial.io, a virtual world platform, enables students to develop digital avatars and engage in virtual art museums through a free browser-based program or an Oculus headset, where they can interact with other visitors and critique each other’s artwork. The goal is not only to provide students with an engaging and immersive learning experience but also to nourish them with a more profound understanding of the language of art criticism and technology. Furthermore, the study aims to cultivate critical thinking skills among students and foster a collaborative spirit. By leveraging cutting-edge VR technology, students are encouraged to explore the possibilities of their field, experimenting with innovative tools and techniques. This approach not only enriches their learning experience but also prepares them for a dynamic and ever-evolving art landscape in technology and education. One of the fundamental objectives of Tredinnick-Kirby and Divinsky is to remodel how feedback is derived through peer-to-peer art critique. Through the inclusion of 3D virtual spaces into the curriculum, students now have the opportunity to install their final artwork in a virtual gallery space and incorporate peer feedback, enabling students to exhibit their work opening the doors to a collaborative and interactive process. Students can provide constructive suggestions, engage in discussions, and integrate peer commentary into developing their ideas and praxis. This approach not only accelerates the learning process but also promotes a sense of community and growth. In summary, the study conducted by the Penn State faculty members Zena Tredinnick-Kirby, and Anna Divinsky represents innovative use of technology in their courses. By incorporating 3D virtual spaces, they are enriching the learners' experience. Through this inventive pedagogical technique, they nurture critical thinking, collaboration, and the practical application of cutting-edge technology in art. This research holds great promise for the future of online art education, transforming it into a dynamic, inclusive, and interactive experience that transcends the confines of distance learning.Keywords: Art, community building, distance learning, virtual reality
Procedia PDF Downloads 716708 Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer
Authors: F. Boukazouha, G. Poulin-Vittrant, M. Rguiti, M. Lethiecq
Abstract:
Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT.Keywords: piezoelectricity, gain, dispalcement, simulations
Procedia PDF Downloads 296707 Improvement of Mechanical Properties of Recycled High-Density and Low-Density Polyethylene Blends through Extrusion, Reinforcement, and Compatibilization Approaches
Authors: H. Kharmoudi, S. Elkoun, M. Robert, C. Diez
Abstract:
In the literature, the elaboration of polymer blends based on recycled HDPE and LDPE is challenging because of the non-miscibility. Ensuring the compatibility of blends is one of the challenges; this study will discuss the different methods to be adopted to assess the compatibility of polymer blends. The first one aims to act on the extrusion process while varying the speed, flow rate, and residence time. The second method has as its purpose the use of grafted anhydride maleic elastomer chains as a compatibilizer. The results of the formulations will be characterized by means of differential scanning calorimetric (DSC) as well as mechanical tensile and bending tests to assess whether pipes made from recycled polyethylene meet the standards.Keywords: recycled HDPE, LDPE, compatibilizer, mechanical tests
Procedia PDF Downloads 1926706 Stability of a Self-Excited Machine Due to the Mechanical Coupling
Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao
Abstract:
Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.Keywords: coupling, mechanical systems, oscillations, rotating shafts
Procedia PDF Downloads 1806705 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.Keywords: mechanical properties, ECAP, titanium, biomedical applications
Procedia PDF Downloads 4516704 Effect of Magnesium Inoculation on the Microstructure and Mechanical Properties of a Spheroidal Cast Iron Knuckle: A Focus on the Steering Arm
Authors: Steven Mavhungu, Didier Nyembwe, Daniel Sekotlong
Abstract:
The steering knuckle is an integral component of the suspension and stability control system of modern vehicles. Good mechanical properties with an emphasis on the fatigue properties are essential for this component as it is subjected to cyclical load of significant magnitude during service. These properties are a function of the microstructure achieved in the component during the various manufacturing processes including forging and casting. The strut mount of the knuckle is required to meet specified microstructure and mechanical properties. However, in line with the recent trend of stringent quality requirements of cast components, Original Equipment Manufacturers (OEMs) have had to extend the specifications to other sections of the knuckle. This paper evaluates the effect of cored wire inoculation on the microstructure and mechanical properties of the steering arm of a typical spheroidal cast iron component. The investigation shows that the use of a cored wire having higher rare earth content formulation could possibly lead to a homogeneous matrix containing consistent graphite nodule morphology. However, this was found not to be the condition for better mechanical properties along the knuckle arm in line with required specifications. The findings in this paper contribute to a better understanding of steering knuckle properties to allow its production for safer automobile applications.Keywords: inoculation, magnesium cored wire, spheroidal graphie, steering knuckle
Procedia PDF Downloads 2246703 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study
Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo
Abstract:
This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization
Procedia PDF Downloads 2656702 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles
Authors: Jafar Razmi
Abstract:
Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains
Procedia PDF Downloads 2406701 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation
Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey
Abstract:
Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering
Procedia PDF Downloads 4556700 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media
Procedia PDF Downloads 3186699 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.Keywords: artificial neural network, classification, students, e-learning
Procedia PDF Downloads 4266698 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3936697 The Effects of Evidence-Based Nursing Training and Consultation Program on Self-Efficacy and Outcome Expectancy of Evidence-Based Practice among Nurses
Authors: Yea-Pyng Lin
Abstract:
Evidence-based nursing (EBN) can improve quality of patient care and reduce medical expenses. Development of training and consultation program according to nurses’ needs and difficulties is essential to promote their competence and self-efficacy in EBN. However, limited research evaluated the effects of EBN program on EBN self-efficacy among nurses. This study aimed to evaluate the effects of an EBN consultation program on self-efficacy and outcome expectancy of evidence-based practice (EBP) among nurses. A two-group pretest-posttest quasi-experimental design was used. A purposive sample of full-time nurses was recruited from a hospital. Experimental group (n=28) received the EBN consultation program including 18-hour EBN training courses, hand-on practices and group discussion by faculty mentors. Control group (n=33) received regular in-service education with no EBN program. All participants received baseline and post-test assessment using Chinese version of Self-Efficacy in EBP scale (SE-EBP) and Outcome Expectancy for EBP scale (OE-EBP). After receiving EBN consultation program, experimental group’s posttest scores of SE-EBP (t=-4.98, p<0.001) and OE-SEP (t=-3.65, p=0.001) were significantly higher than those of the pretests. By controlling the age and years of nursing work experience, the experimental group‘s SE-EBP(F=10.47, p=0.002) and OE-SEP(F=9.53, p=0.003) scores were significantly improved compared to those of the control group. EBN program focus on hand-on practice and group discussion by faculty mentors in addition to EBN training courses can improve EBP self-efficacy and outcome expectancy among nurses. EBN program focus on English literature reading, database searching, and appraisal practice according to nurses’ needs and difficulties can promote implementation of EBN.Keywords: evidence-based nursing, evidence-based practice, consultation program, self-efficacy, outcome expectancy
Procedia PDF Downloads 5006696 Effect of Pressing Pressure on Mechanical Properties of Elaeis guineensis Jacq. Fronds-Based Composite Board
Authors: Ellisha Iling, Dayang Siti Hazimmah Ali
Abstract:
Experimental composite boards were fabricated using oil palm (Elaeis guineensis Jacq) fronds particles by applying hot press pressure of 5MPa, 6MPa and 7MPa respectively. Modulus of rupture (MOR) and internal bond strength (IB) of the composite boards made with target density of 0.80 g/cm³ were evaluated. Composite board fabricated under hot press pressure of 5MPa had MOR and IB values of 16.27 and 4.34 N/mm² respectively. Corresponding values for composite board fabricated under hot press pressure of 6MPa were 16.76 and 5.41 N/mm² respectively. Whereas, the MOR and IB values of composite board fabricated under hot press pressure of 7MPa were 17.24 and 6.19 N/mm² respectively. All composite boards met the MOR and IB requirement stated in Japanese Industrial Standard (JIS). Based on results of this work, the strength of mechanical properties of composite board increased with increase of hot press pressure. This study revealed that the selection of applied pressure during fabrication of composite board is important to improve mechanical properties of composite boards.Keywords: composite board, Elaeis guineensis Jacq. Fronds, hot press pressure, mechanical properties
Procedia PDF Downloads 197