Search results for: limestone trickling filter
562 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 127561 Recent Advancement in Fetal Electrocardiogram Extraction
Authors: Savita, Anurag Sharma, Harsukhpreet Singh
Abstract:
Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.Keywords: aECG, ACF, fECG, mECG
Procedia PDF Downloads 408560 Flocculation and Settling Rate Studies of Clean Coal Fines at Different Flocculants Dosage, pH Values, Bulk Density and Particle Size
Authors: Patel Himeshkumar Ashokbhai, Suchit Sharma, Arvind Kumar Garg
Abstract:
The results obtained from settling test of coal fines are used as an important tool to select the dewatering equipment such as thickeners, centrifuges and filters. Coal being hydrophobic in nature does not easily settle when mixed with water. Coal slurry that takes longer time to release water is highly undesirable because it poses additional challenge during sedimentation, centrifuge and filtration. If filter cake has higher than permitted moisture content then it not only creates handling problems but inflated freight costs and reduction in input and productivity for coke oven charges. It is to be noted that coal fines drastically increase moisture percentage in filter cake hence are to be minimized. To increase settling rate of coal fines in slurry chemical substances called flocculants or coagulants are added that cause coal particles to flocculate or coalesce into larger particles. These larger particles settle at faster rate and have higher settling velocity. Other important factors affecting settling rate are flocculent dosage, slurry or pulp density and particle size. Hence in this paper we tried to study the settling characteristic of clean coal fines by varying one of the four factors namely 1. Flocculant Dosage (acryl-amide) 2. pH of the water 3. Bulk density 4. Particle size of clean coal fines in settling experiment and drew important conclusions. Result of this paper will be much useful not only for coal beneficiation plant design but also for cost reduction of coke production facilities.Keywords: bulk density, coal fines, flocculants, flocculation, settling velocity, pH
Procedia PDF Downloads 324559 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters
Authors: Ravi Kiran Jaladi, Ezz I. El-Masry
Abstract:
Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)
Procedia PDF Downloads 261558 Environmental Impact Assessment of Municipal Solid Waste Disposal Site in Shahrood City
Authors: Mehri Bagherkazemi, Naser Hafezi Moghaddas
Abstract:
This study investigates the environmental impact of the disposal site located in Shahrood city, focusing on the geological characteristics of the region. Shahrood's disposal site primarily consists of limestone bedrock, overlaid by substantial alluvial deposits. The area's highly permeable soil is anticipated to have a significant influence on groundwater pollution. Spanning 52 hectares, the Shahrood disposal site is situated in the eastern sector of the city. Historically, waste disposal took place on the surface, but recent practices involve on-site trenching. This research involved the collection of soil and water samples near the disposal site, with subsequent analysis of 11 soil samples and 3 water samples. The soil's particle size distribution was determined, and comprehensive analyses were conducted for 35 elements in the soil and 42 elements in water. The study combines the results of these tests with field investigations to evaluate the landfill's impact on the surrounding soil and groundwater contamination.Keywords: environmental geology, environmental impact assessment, disposal site, heavy metals contamination
Procedia PDF Downloads 79557 Performance Evaluation of GPS/INS Main Integration Approach
Authors: Othman Maklouf, Ahmed Adwaib
Abstract:
This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system
Procedia PDF Downloads 591556 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens
Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi
Abstract:
Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.Keywords: brittleness, loading rate, acoustic emission, tensile fracture, shear fracture
Procedia PDF Downloads 480555 Design of Low-Cost Water Purification System Using Activated Carbon
Authors: Nayan Kishore Giri, Ramakar Jha
Abstract:
Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage.Keywords: potable water, coconut shell GAC, polypropylene filter cloths, SEM, XRD, BET, AAS
Procedia PDF Downloads 382554 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 155553 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter
Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball
Abstract:
The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS
Procedia PDF Downloads 46552 A Comparative Study of Black Carbon Emission Characteristics from Marine Diesel Engines Using Light Absorption Method
Authors: Dongguk Im, Gunfeel Moon, Younwoo Nam, Kangwoo Chun
Abstract:
Recognition of the needs about protecting environment throughout worldwide is widespread. In the shipping industry, International Maritime Organization (IMO) has been regulating pollutants emitted from ships by MARPOL 73/78. Recently, the Marine Environment Protection Committee (MEPC) of IMO, at its 68th session, approved the definition of Black Carbon (BC) specified by the following physical properties (light absorption, refractory, insolubility and morphology). The committee also agreed to the need for a protocol for any voluntary measurement studies to identify the most appropriate measurement methods. Filter Smoke Number (FSN) based on light absorption is categorized as one of the IMO relevant BC measurement methods. EUROMOT provided a FSN measurement data (measured by smoke meter) of 31 different engines (low, medium and high speed marine engines) of member companies at the 3rd International Council on Clean Transportation (ICCT) workshop on marine BC. From the comparison of FSN, the results indicated that BC emission from low speed marine diesel engines was ranged from 0.009 to 0.179 FSN and it from medium and high speed marine diesel engine was ranged 0.012 to 3.2 FSN. In consideration of measured the low FSN from low speed engine, an experimental study was conducted using both a low speed marine diesel engine (2 stroke, power of 7,400 kW at 129 rpm) and a high speed marine diesel engine (4 stroke, power of 403 kW at 1,800 rpm) under E3 test cycle. The results revealed that FSN was ranged from 0.01 to 0.16 and 1.09 to 1.35 for low and high speed engines, respectively. The measurement equipment (smoke meter) ranges from 0 to 10 FSN. Considering measurement range of it, FSN values from low speed engines are near the detection limit (0.002 FSN or ~0.02 mg/m3). From these results, it seems to be modulated the measurement range of the measurement equipment (smoke meter) for enhancing measurement accuracy of marine BC and evaluation on performance of BC abatement technologies.Keywords: black carbon, filter smoke number, international maritime organization, marine diesel engine (two and four stroke), particulate matter
Procedia PDF Downloads 279551 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter
Authors: Harish Aryal
Abstract:
The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters
Procedia PDF Downloads 77550 Fluid Inclusions Analysis of Fluorite from the Hammam Jedidi District, North-Eastern Tunisia
Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi
Abstract:
Hydrothermal vein-type deposits of the Hammam Jedidi F-Ba(Pb-Zn-Cu) are hosted in Lower Jurassic, Cretaceous and Tertiary series, and located near a very important structural lineament (NE-SW) corresponding to the Hammam Jedidi Fault in the Tunisian Dorsale. The circulation of the ore forming fluid is triggered by a regional tectonic compressive phase which occurred during the miocène time. Mineralization occurs as stratabound and vein-type orebodies adjacent to the Triassic salt diapirs and within fault in Jurassic limestone. Fluid inclusions data show that two distinct fluids were involved in the mineralisation deposition: a warmer saline fluid (180°C, 20 wt % NaCl equivalent) and cooler less saline fluid (126°C, 5wt%NaCl equivalent). The contrasting salinities and halogen ratios suggest that this two fluid derived from one of the brine originated after the dissolution of halite as suggested by its high salinity. The other end member, as indicated by the low Cl/Br ratios, acquired its low salinity by dilution of Br enriched evaporated seawater. These results are compatible with Mississippi-Valley- type mineralization.Keywords: Jebel Oust, fluid inclusions, North Eastern Tunisia, mineralization
Procedia PDF Downloads 344549 Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran
Authors: Azat Eslamizadeh, Neda Akbarian
Abstract:
The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks.Keywords: Zaghia, iron ore deposite, mineralogy, petrography Bafq, Iran
Procedia PDF Downloads 526548 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties
Authors: Kumator Josiphiah Taku
Abstract:
Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage
Procedia PDF Downloads 166547 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 433546 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri
Authors: Shishay T. Kidanu
Abstract:
The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.Keywords: ERT, Karst, MASW, sinkhole
Procedia PDF Downloads 214545 Microfluidic Based High Throughput Screening System for Photodynamic Therapy against Cancer Cells
Authors: Rina Lee, Chung-Hun Oh, Eunjin Lee, Jeongyun Kim
Abstract:
The Photodynamic therapy (PDT) is a treatment that uses a photosensitizer as a drug to damage and kill cancer cells. After injecting the photosensitizer into the bloodstream, the drug is absorbed by cancer cells selectively. Then the area to be treated is exposed to specific wavelengths of light and the photosensitizer produces a form of oxygen that kills nearby cancer cells. PDT is has an advantage to destroy the tumor with minimized side-effects on normal cells. But, PDT is not a completed method for cancer therapy. Because the mechanism of PDT is quite clear yet and the parameters such as intensity of light and dose of photosensitizer are not optimized for different types of cancers. To optimize these parameters, we suggest a novel microfluidic system to automatically control intensity of light exposure with a personal computer (PC). A polydimethylsiloxane (PDMS) microfluidic chip is composed with (1) a cell culture channels layer where cancer cells were trapped to be tested with various dosed photofrin (1μg/ml used for the test) as the photosensitizer and (2) a color dye layer as a neutral density (ND) filter to reduce intensity of light which exposes the cell culture channels filled with cancer cells. Eight different intensity of light (10%, 20%, …, 100%) are generated through various concentrations of blue dye filling the ND filter. As a light source, a light emitting diode (LED) with 635nm wavelength was placed above the developed PDMS microfluidic chip. The total time for light exposure was 30 minutes and HeLa and PC3 cell lines of cancer cells were tested. The cell viability of cells was evaluated with a Live/Dead assay kit (L-3224, Invitrogen, USA). The stronger intensity of light exposed, the lower viability of the cell was observed, and vice versa. Therefore, this system was demonstrated through investigating the PDT against cancer cell to optimize the parameters as critical light intensity and dose of photosensitizer. Our results suggest that the system can be used for optimizing the combinational parameters of light intensity and photosensitizer dose against diverse cancer cell types.Keywords: photodynamic therapy, photofrin, high throughput screening, hela
Procedia PDF Downloads 385544 Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models
Authors: Gao Youtao, Zhao Tanran, Jin Bingyu, Xu Bo
Abstract:
Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy.Keywords: extended Kalman filter, autonomous orbit determination, quasi-periodic orbit, navigation constellation
Procedia PDF Downloads 283543 Location Uncertainty – A Probablistic Solution for Automatic Train Control
Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland
Abstract:
New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.Keywords: ERTMS, CBTC, ATP, ATO
Procedia PDF Downloads 410542 Contribution to Improving the DFIG Control Using a Multi-Level Inverter
Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy
Abstract:
Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine
Procedia PDF Downloads 250541 Morphology, Chromosome Numbers and Molecular Evidences of Three New Species of Begonia Section Baryandra (Begoniaceae) from Panay Island, Philippines
Authors: Rosario Rivera Rubite, Ching-I Peng, Che-Wei Lin, Mark Hughes, Yoshiko Kono, Kuo-Fang Chung
Abstract:
The flora of Panay Island is under-collected compared with the other islands of the Philippines. In a joint expedition to the island, botanists from Taiwan and the Philippines found three unknown Begonia and compared them with potentially allied species. The three species are clearly assignable to Begonia section Baryandra which is largely endemic to the Philippines. Studies of literature, herbarium specimens, and living plants support the recognition of the three new species: Begonia culasiensis, Begonia merrilliana, and Begonia sykakiengii. Somatic chromosomes at metaphase were determined to be 2n=30 for B. culasiensis and 2n=28 for both B. merrilliana and B. sykakiengii, which are congruent with those of most species in sect. Baryandra. Molecular phylogenetic evidence is consistent with B. culasiensis being a relict from the late Miocene, and with B. merrilliana and B. sykakiengii being younger species of Pleistocene origin. The continuing discovery of endemic Philippine species means the remaining fragments of both primary and secondary native vegetation in the archipelago are of increasing value in terms of natural capital. A secure future for the species could be realized through ex-situ conservation collections and raising awareness with community groups.Keywords: conservation, endemic , herbarium , limestone, phylogenetics, taxonomy
Procedia PDF Downloads 218540 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 247539 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification
Procedia PDF Downloads 268538 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry
Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu
Abstract:
The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS
Procedia PDF Downloads 282537 Economic Approaches to Obtaining and Maintaining Quality, Sterile Drinking Water from Natural Waters Through the Use of Nanotechnological Membrane Systems
Authors: George Bibileishvili, Manana Mamulashvili, Zaza Javashvili, Liana Ebanoidze
Abstract:
Economic Approaches to Obtaining and Maintaining Quality, Sterile Drinking Water from Natural Waters Through the Use of Nanotechnological Membrane SystemsKeywords: membrane, filter, ultrafiltration, water
Procedia PDF Downloads 76536 Synchronous Reference Frame and Instantaneous P-Q Theory Based Control of Unified Power Quality Conditioner for Power Quality Improvement of Distribution System
Authors: Ambachew Simreteab Gebremedhn
Abstract:
Context: The paper explores the use of synchronous reference frame theory (SRFT) and instantaneous reactive power theory (IRPT) based control of Unified Power Quality Conditioner (UPQC) for improving power quality in distribution systems. Research Aim: To investigate the performance of different control configurations of UPQC using SRFT and IRPT for mitigating power quality issues in distribution systems. Methodology: The study compares three control techniques (SRFT-IRPT, SRFT-SRFT, IRPT-IRPT) implemented in series and shunt active filters of UPQC. Data is collected under various control algorithms to analyze UPQC performance. Findings: Results indicate the effectiveness of SRFT and IRPT based control techniques in addressing power quality problems such as voltage sags, swells, unbalance, harmonics, and current harmonics in distribution systems. Theoretical Importance: The study provides insights into the application of SRFT and IRPT in improving power quality, specifically in mitigating unbalanced voltage sags, where conventional methods fall short. Data Collection: Data is collected under various control algorithms using simulation in MATLAB Simulink and real-time operation executed with experimental results obtained using RT-LAB. Analysis Procedures: Performance analysis of UPQC under different control algorithms is conducted to evaluate the effectiveness of SRFT and IRPT based control techniques in mitigating power quality issues. Questions Addressed: How do SRFT and IRPT based control techniques compare in improving power quality in distribution systems? What is the impact of using different control configurations on the performance of UPQC? Conclusion: The study demonstrates the efficacy of SRFT and IRPT based control of UPQC in mitigating power quality issues in distribution systems, highlighting their potential for enhancing voltage and current quality.Keywords: power quality, UPQC, shunt active filter, series active filter, non-linear load, RT-LAB, MATLAB
Procedia PDF Downloads 14535 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 52534 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper
Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan
Abstract:
Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper
Procedia PDF Downloads 240533 An Algorithm to Compute the State Estimation of a Bilinear Dynamical Systems
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, we introduce a mathematical algorithm which is used for estimating the states in the bilinear systems. This algorithm uses a special linearization of the second-order term by using the best available information about the state of the system. This technique makes our algorithm generalizes the well-known Kalman estimators. The system which is used here is of the bilinear class, the evolution of this model is linear-bilinear in the state of the system. Our algorithm can be used with linear and bilinear systems. We also here introduced a real application for the new algorithm to prove the feasibility and the efficiency for it.Keywords: estimation algorithm, bilinear systems, Kakman filter, second order linearization
Procedia PDF Downloads 487