Search results for: grain size analysis
31593 Study of the Chemical Composition of Rye, Millet and Sorghum from Algeria
Authors: Soualem Mami Zoubida, Brixi Nassima, Beghdad Choukri, Belarbi Meriem
Abstract:
Cereals are the most important source of dietary fiber in the Nordic diet. The fiber in cereals is located mainly in the outer layers of the kernel; particularly in the bran. Improved diet can help unlock the door to good health. Whole grains are an important source of nutrients that are in short supply in our diet, including digestible carbohydrates, dietary fiber, trace minerals, and other compounds of interest in disease prevention, including phytoestrogens and antioxidants (1). The objective of this study is to know the composition of whole grain cereals (rye, millet, white, and red sorghum) which a majority pushes in the south of Algeria. This shows that the millet has a high rate of the sugar estimated at 67.6%. The high proportion of proteins has been found in the two varieties of sorghum and rye. The millet presents the great percentage in lipids compared with the others cereals. And at the last, a red sorghum has the highest rate of fiber(2). These nutrients, as well as other components of whole grain cereals, have, in terms of health, an increased effect if they are consumed together.Keywords: chemical composition, miller, Secale cereal, Sorghum bicolor
Procedia PDF Downloads 41331592 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction
Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai
Abstract:
A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment
Procedia PDF Downloads 14631591 An Estimation of Rice Output Supply Response in Sierra Leone: A Nerlovian Model Approach
Authors: Alhaji M. H. Conteh, Xiangbin Yan, Issa Fofana, Brima Gegbe, Tamba I. Isaac
Abstract:
Rice grain is Sierra Leone’s staple food and the nation imports over 120,000 metric tons annually due to a shortfall in its cultivation. Thus, the insufficient level of the crop's cultivation in Sierra Leone is caused by many problems and this led to the endlessly widening supply and demand for the crop within the country. Consequently, this has instigated the government to spend huge money on the importation of this grain that would have been otherwise cultivated domestically at a cheaper cost. Hence, this research attempts to explore the response of rice supply with respect to its demand in Sierra Leone within the period 1980-2010. The Nerlovian adjustment model to the Sierra Leone rice data set within the period 1980-2010 was used. The estimated trend equations revealed that time had significant effect on output, productivity (yield) and area (acreage) of rice grain within the period 1980-2010 and this occurred generally at the 1% level of significance. The results showed that, almost the entire growth in output had the tendency to increase in the area cultivated to the crop. The time trend variable that was included for government policy intervention showed an insignificant effect on all the variables considered in this research. Therefore, both the short-run and long-run price response was inelastic since all their values were less than one. From the findings above, immediate actions that will lead to productivity growth in rice cultivation are required. To achieve the above, the responsible agencies should provide extension service schemes to farmers as well as motivating them on the adoption of modern rice varieties and technology in their rice cultivation ventures.Keywords: Nerlovian adjustment model, price elasticities, Sierra Leone, trend equations
Procedia PDF Downloads 23331590 Comparative Analysis of the Expansion Rate and Soil Erodibility Factor (K) of Some Gullies in Nnewi and Nnobi, Anambra State Southeastern Nigeria
Authors: Nzereogu Stella Kosi, Igwe Ogbonnaya, Emeh Chukwuebuka Odinaka
Abstract:
A comparative analysis of the expansion rate and soil erodibility of some gullies in Nnewi and Nnobi both of Nanka Formation were studied. The study involved an integration of field observations, geotechnical analysis, slope stability analysis, multivariate statistical analysis, gully expansion rate analysis, and determination of the soil erodibility factor (K) from Revised Universal Soil Loss Equation (RUSLE). Fifteen representative gullies were studied extensively, and results reveal that the geotechnical properties of the soil, topography, vegetation cover, rainfall intensity, and the anthropogenic activities in the study area were major factors propagating and influencing the erodibility of the soils. The specific gravity of the soils ranged from 2.45-2.66 and 2.54-2.78 for Nnewi and Nnobi, respectively. Grain size distribution analysis revealed that the soils are composed of gravel (5.77-17.67%), sand (79.90-91.01%), and fines (2.36-4.05%) for Nnewi and gravel (7.01-13.65%), sand (82.47-88.67%), and fines (3.78-5.02%) for Nnobi. The soils are moderately permeable with values ranging from 2.92 x 10-5 - 6.80 x 10-4 m/sec and 2.35 x 10-6 - 3.84 x 10⁻⁴m/sec for Nnewi and Nnobi respectively. All have low cohesion values ranging from 1–5kPa and 2-5kPa and internal friction angle ranging from 29-38° and 30-34° for Nnewi and Nnobi, respectively, which suggests that the soils have low shear strength and are susceptible to shear failure. Furthermore, the compaction test revealed that the soils were loose and easily erodible with values of maximum dry density (MDD) and optimum moisture content (OMC) ranging from 1.82-2.11g/cm³ and 8.20-17.81% for Nnewi and 1.98-2.13g/cm³ and 6.00-17.80% respectively. The plasticity index (PI) of the fines showed that they are nonplastic to low plastic soils and highly liquefiable with values ranging from 0-10% and 0-9% for Nnewi and Nnobi, respectively. Multivariate statistical analyses were used to establish relationship among the determined parameters. Slope stability analysis gave factor of safety (FoS) values in the range of 0.50-0.76 and 0.82-0.95 for saturated condition and 0.73-0.98 and 0.87-1.04 for unsaturated condition for both Nnewi and Nnobi, respectively indicating that the slopes are generally unstable to critically stable. The erosion expansion rate analysis for a fifteen-year period (2005-2020) revealed an average longitudinal expansion rate of 36.05m/yr, 10.76m/yr, and 183m/yr for Nnewi, Nnobi, and Nanka type gullies, respectively. The soil erodibility factor (K) are 8.57x10⁻² and 1.62x10-4 for Nnewi and Nnobi, respectively, indicating that the soils in Nnewi have higher erodibility potentials than those of Nnobi. From the study, both the Nnewi and Nnobi areas are highly prone to erosion. However, based on the relatively lower fine content of the soil, relatively lower topography, steeper slope angle, and sparsely vegetated terrain in Nnewi, soil erodibility and gully intensity are more profound in Nnewi than Nnobi.Keywords: soil erodibility, gully expansion, nnewi-nnobi, slope stability, factor of safety
Procedia PDF Downloads 13031589 Response of Different Mulch Materials on Cowpea (Vigna unguiculata ) Growth and Yield in Tolon District
Authors: Adu Micheal Kwaku, Lamptey Shirley
Abstract:
Cowpea (Vigna unguiculata (L.) Walpis) is a major food grain legume in Ghana and plays a significant role in consumer diets. Drought in rain-fed crop production is known to cause substantial crop yield reduction due to their negative impacts on plant growth, physiology, and reproduction. There are various ways of reducing the effect of drought or addressing the problem of drought stress, including irrigation, breeding, and mulching. Among these three ways of reducing the effect of drought stress, the cheapest and quickest method is mulching. The broad objective of this project is to determine the influence of mulching on the performance of cowpea. The experiment was conducted at Planting for future garden located at Nyankpala Campus of the University for Development Studies (UDS), comprising five treatments (black plastic, rice hull, groundnut hull, dry grass mulch, and control). The treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replications. The result shows that black plastic mulch increased soil moisture by 1, 8, 15, and 24% compared to rice hull, groundnut hull, dry grass, and control, respectively. Increased soil moisture translated into black plastic mulch increasing grain yield by 8, 25, 39, and 46% compared to groundnut hull, rice hull, dry grass and control, respectively. However, black plastic mulch increased the cost of production, resulting in decreased net returns compared to the other treatment. This study recommends the use of rice and groundnut hull as mulching material to improve soil moisture, grain yield, and profit of smallholder cowpea farmers and also because they are almost free and available.Keywords: mulch, plastic mulch, cowpea, growth response
Procedia PDF Downloads 9131588 Effect of Women`s Autonomy on Unmet Need for Contraception and Family Size in India
Authors: Anshita Sharma
Abstract:
India is one of the countries to initiate family planning with intention to control the growing population by reducing fertility. In effort to this, India had introduced the National family planning programme in 1952. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services as in NFHS-1 the unmet need for limiting, spacing and total was 46 percent, 14 percent & 9 percent, respectively. The demand for spacing has reduced to at 8 percent, 8 percent for limiting and total unmet need was 16 percent in NFHS-2. The total unmet need has reduced to 13 percent in NFHS-3 for all currently married women and the demand for limiting and spacing is 7 percent and 6 percent respectively. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services. Despite the progress, there is chunk of women who are deprived of controlling unintended and unwanted pregnancies. The present paper examines the socio-cultural and economic and demographic correlates of unmet need for contraception in India. It also examines the effect of women’s autonomy and unmet need for contraception on family size among different socio-economic groups of population. It uses data from national family health survey-3 carried out in 2005-06 and employs bi-variate techniques and multivariate techniques for analysis. The multiple regression analysis has done to seek the level and direction of relationship among various socio-economic and demographic factors. The result reveals that women with higher level of education and economic status have low level of unmet need for family planning. Women living in non-nuclear family have high unmet need for spacing and women living in nuclear family have high unmet need for limiting and family size is slightly higher of women of nuclear family. In India, the level of autonomy varies at different life point; usually women with higher age enjoy higher autonomy than their junior female member in the family. The finding shows that women with higher autonomy have large family size counter to women with low autonomy have low family size. Unmet need for family planning decrease with women’s increasing exposure to mass- media. The demographic factors like experience of child loss are directly related to family size. Women who experience higher child loss have low unmet need for spacing and limiting. Thus, It is established with the help that women’s autonomy status play substantial role in fulfilling demand of contraception for limiting and spacing which affect the family size.Keywords: family size, socio-economic correlates, unmet need for limiting, unmet need for spacing, women`s autonomy
Procedia PDF Downloads 26731587 Investigation of Drought Resistance in Iranian Sesamum Germpelasm
Authors: Fatemeh Najafi
Abstract:
The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS).Keywords: sesamum, drought, stress, germplasm, resistance
Procedia PDF Downloads 7231586 Influence of Tactile Symbol Size on Its Perceptibility in Consideration of Effect of Aging
Authors: T. Nishimura, K. Doi, H. Fujimoto, T. Wada
Abstract:
We conducted perception experiments on tactile symbols to elucidate the impact of the size of these letters on the level of perceptibility. This study was based on the accessible design perspective and aimed at expanding the availability of tactile symbols for the visually impaired who are unable to read Braille characters. In particular, this study targeted people with acquired visual impairments as users of the tactile symbols. The subjects (young and elderly individuals) in this study had normal vision. They were asked to participate in the experiments to identify tactile symbols while unable to see their hand during the experiments. This study investigated the relation between the size and perceptibility of tactile symbols based on an examination using test pieces of these letters in different sizes. The results revealed that the error rates for both young and elderly subjects converged to almost 0% when 12 mm size tactile symbols were used. The findings also showed that the error rate was low and subjects could identify the symbols in 5 s when 16 mm size tactile symbols were introduced.Keywords: accessible design, tactile sense, tactile symbols, bioinformatic
Procedia PDF Downloads 35131585 Mitigating the Negative Effect of Intrabrand Clustering: The Role of Interbrand Clustering and Firm Size
Authors: Moeen Naseer Butt
Abstract:
Clustering –geographic concentrations of entities– has recently received more attention in marketing research and has been shown to affect multiple outcomes. This study investigates the impact of intrabrand clustering (clustering of same-brand outlets) on an outlet’s quality performance. Further, it assesses the moderating effects of interbrand clustering (clustering of other-brand outlets) and firm size. An examination of approximately 21,000 food service establishments in New York State in 2019 finds that the impact of intrabrand clustering on an outlet’s quality performance is context-dependent. Specifically, intrabrand clustering decreases, whereas interbrand clustering and firm size help increase the outlet’s performance. Additionally, this study finds that the role of firm size is more substantial than interbrand clustering in mitigating the adverse effects of intrabrand clustering on outlet quality performance.Keywords: intraband clustering, interbrand clustering, firm size, brand competition, outlet performance, quality violations
Procedia PDF Downloads 18831584 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo
Authors: F. Brunke, L. Waalkes, C. Siemers
Abstract:
Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.Keywords: Ti 15Mo, titanium alloys, rare earth metals, free machining alloy
Procedia PDF Downloads 34231583 The Effects of High-frequency rTMS Targeting the Mirror Neurons on Improving Social Awareness in ASD, the Preliminary Analysis of a Pilot Study
Authors: Mitra Assadi, Md. Faan
Abstract:
Background: Autism Spectrum Disorder (ASD) in a common neurodevelopmental disorder with limited pharmacological interventions. Transcranial Magnetic Stimulation (rTMS) has produced promising results in ASD, although there is no consensus regarding optimal targets or stimulation paradigms. A prevailing theory in ASD attributes the core deficits to dysfunction of the mirror neurons located in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Methods: Thus far, 11 subjects with ASD, 10 boys and 1 girl with the mean age of 13.36 years have completed the study by receiving 10 session of high frequency rTMS to the IPL. The subjects were randomized to receive stimulation on the left or right IPL and sham stimulation to the opposite side. The outcome measures included the Social Responsiveness Scale – Second Edition (SRS-2) and Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency task. Results: None of the 11 subjects experienced any adverse effects. The rTMS did not produce any improvement in verbal fluency, nor there was any statistically significant difference between the right versus left sided stimulation. Analysis of social awareness on SRS-2 (SRS-AWR) indicated a close to significant effect of the treatment with a small to medium effect size. After removing a single subject with Level 3 ASD, we demonstrated a close to significant improvement on SRS-AWR with a large effect size. The analysis of the data 3-month post TMS demonstrated return of the SRS-AWR values to baseline. Conclusion: This preliminary analysis of the 11 subjects who have completed our study thus far shows a favorable response to high frequency rTMS stimulation of the mirror neurons/IPL on social awareness. While the decay of the response noted during the 3-month follow-up may be considered a limitation of rTMS, the presence of the improvement, especially the effect size despite the small sample size, is indicative of the efficacy of this technique.Keywords: rTMS, autism, scoial cognition, mirror neurons
Procedia PDF Downloads 6931582 Periodic Topology and Size Optimization Design of Tower Crane Boom
Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng
Abstract:
In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.Keywords: tower crane boom, topology optimization, size optimization, periodic, SKO, optimization criterion
Procedia PDF Downloads 55431581 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 37431580 Research on Teachers’ Perceptions on the Usability of Classroom Space: Analysis of a Nation-Wide Questionnaire Survey in Japan
Authors: Masayuki Mori
Abstract:
This study investigates the relationship between teachers’ perceptions of the usability of classroom space and various elements, including both physical and non-physical, of classroom environments. With the introduction of the GIGA School funding program in Japan in 2019, understanding its impact on learning in classroom space is crucial. The program enabled local educational authorities (LEA) to make it possible to provide one PC/tablet for each student of both elementary and junior high schools. Moreover, at the same time, the program also supported LEA to purchase other electronic devices for educational purposes such as electronic whiteboards, large displays, and real image projectors. A nationwide survey was conducted using random sampling methodology among 100 junior high schools to collect data on classroom space. Of those, 60 schools responded to the survey. The survey covered approximately fifty items, including classroom space size, class size, and educational electronic devices owned. After the data compilation, statistical analysis was used to identify correlations between the variables and to explore the extent to which classroom environment elements influenced teachers’ perceptions. Furthermore, decision tree analysis was applied to visualize the causal relationships between the variables. The findings indicate a significant negative correlation between class size and teachers’ evaluation of usability. In addition to the class size, the way students stored their belongings also influenced teachers’ perceptions. As for the placement of educational electronic devices, the installation of a projector produced a small negative correlation with teachers’ perceptions. The study suggests that while the GIGA School funding program is not significantly influential, traditional educational conditions such as class size have a greater impact on teachers’ perceptions of the usability of classroom space. These results highlight the need for awareness and strategies to integrate various elements in designing the learning environment of the classroom for teachers and students to improve their learning experience.Keywords: classroom space, GIGA School, questionnaire survey, teachers’ perceptions
Procedia PDF Downloads 2131579 Investigating Re-Use a Historical Masonry Arch Bridge
Authors: H. A. Erdogan
Abstract:
Historical masonry arch bridges built centuries ago have fulfilled their function until recent decades. However, from the beginning of 20th century, these bridges have remained inadequate as a result of increasing speed, size and capacity of the means of transport. Although new bridges have been built in many places, masonry bridges located within the city limits still need to be used. When the size and transportation loads of modern vehicles are taken into account, it is apparent that historical masonry arch bridges would be exposed to greater loads than their initial design loads. Because of that, many precautions taken either remain insufficient or damage these bridges. In this study, the history of Debbaglar Bridge, one of the historic bridges located in the city center of Aksaray/Turkey is presented and its existing condition is evaluated. Structural analysis of the bridge under present conditions and loads is explained. Moreover, the retrofit and restoration application prepared considering the analysis data is described.Keywords: adaptive re-use, Aksaray debbaglar bridge, masonry bridge, reconstruction
Procedia PDF Downloads 31031578 Development of Methods for Plastic Injection Mold Weight Reduction
Authors: Bita Mohajernia, R. J. Urbanic
Abstract:
Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction
Procedia PDF Downloads 28931577 Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media
Authors: Nour Ismail, Sahar El Kardawy, Bassant Badwy
Abstract:
Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size.Keywords: finite element model, nerve lesioning, pain relief, radiofrequency lesion
Procedia PDF Downloads 41631576 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration
Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad
Abstract:
In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands
Procedia PDF Downloads 6331575 Field Application of Reduced Crude Conversion Spent Lime
Authors: Brian H. Marsh, John H. Grove
Abstract:
Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime.Keywords: soil acidity, corn, soybean, liming materials
Procedia PDF Downloads 35831574 Calculation of the Added Mass of a Submerged Object with Variable Sizes at Different Distances from the Wall via Lattice Boltzmann Simulations
Authors: Nastaran Ahmadpour Samani, Shahram Talebi
Abstract:
Added mass is an important quantity in analysis of the motion of a submerged object ,which can be calculated by solving the equation of potential flow around the object . Here, we consider systems in which a square object is submerged in a channel of fluid and moves parallel to the wall. The corresponding added mass at a given distance from the wall d and for the object size s (which is the side of square object) is calculated via lattice Blotzmann simulation . By changing d and s separately, their effect on the added mass is studied systematically. The simulation results reveal that for the systems in which d > 4s, the distance does not influence the added mass any more. The added mass increases when the object approaches the wall and reaches its maximum value as it moves on the wall (d -- > 0). In this case, the added mass is about 73% larger than which of the case d=4s. In addition, it is observed that the added mass increases by increasing of the object size s and vice versa.Keywords: Lattice Boltzmann simulation , added mass, square, variable size
Procedia PDF Downloads 47631573 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans
Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti
Abstract:
There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material
Procedia PDF Downloads 13031572 Bioavailability of Zinc to Wheat Grown in the Calcareous Soils of Iraqi Kurdistan
Authors: Muhammed Saeed Rasheed
Abstract:
Knowledge of the zinc and phytic acid (PA) concentrations of staple cereal crops are essential when evaluating the nutritional health of national and regional populations. In the present study, a total of 120 farmers’ fields in Iraqi Kurdistan were surveyed for zinc status in soil and wheat grain samples; wheat is the staple carbohydrate source in the region. Soils were analysed for total concentrations of phosphorus (PT) and zinc (ZnT), available P (POlsen) and Zn (ZnDTPA) and for pH. Average values (mg kg-1) ranged between 403-3740 (PT), 42.0-203 (ZnT), 2.13-28.1 (POlsen) and 0.14-5.23 (ZnDTPA); pH was in the range 7.46-8.67. The concentrations of Zn, PA/Zn molar ratio and estimated Zn bioavailability were also determined in wheat grain. The ranges of Zn and PA concentrations (mg kg⁻¹) were 12.3-63.2 and 5400 – 9300, respectively, giving a PA/Zn molar ratio of 15.7-30.6. A trivariate model was used to estimate intake of bioaccessible Zn, employing the following parameter values: (i) maximum Zn absorption = 0.09 (AMAX), (ii) equilibrium dissociation constant of zinc-receptor binding reaction = 0.680 (KP), and (iii) equilibrium dissociation constant of Zn-PA binding reaction = 0.033 (KR). In the model, total daily absorbed Zn (TAZ) (mg d⁻¹) as a function of total daily nutritional PA (mmole d⁻¹) and total daily nutritional Zn (mmole Zn d⁻¹) was estimated assuming an average wheat flour consumption of 300 g day⁻¹ in the region. Consideration of the PA and Zn intake suggest only 21.5±2.9% of grain Zn is bioavailable so that the effective Zn intake from wheat is only 1.84-2.63 mg d-1 for the local population. Overall results suggest available dietary Zn is below recommended levels (11 mg d⁻¹), partly due to low uptake by wheat but also due to the presence of large concentrations of PA in wheat grains. A crop breeding program combined with enhanced agronomic management methods is needed to enhance both Zn uptake and bioavailability in grains of cultivated wheat types.Keywords: phosphorus, zinc, phytic acid, phytic acid to zinc molar ratio, zinc bioavailability
Procedia PDF Downloads 12331571 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method
Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay
Abstract:
This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.Keywords: biaxial test, particle shape, monotonic, cyclic
Procedia PDF Downloads 7131570 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine
Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof
Abstract:
Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine
Procedia PDF Downloads 7231569 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method
Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad
Abstract:
Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method
Procedia PDF Downloads 37331568 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data
Authors: S. Jurado, E. Pazmino
Abstract:
Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.Keywords: medial axis, pore-throat distribution, porosity, porous media
Procedia PDF Downloads 11531567 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis
Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay
Abstract:
The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material
Procedia PDF Downloads 60131566 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport
Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto
Abstract:
The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell
Procedia PDF Downloads 9231565 Approach to Study the Workability of Concrete with the Fractal Model
Authors: Achouri Fatima, Chouicha Kaddour
Abstract:
The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.Keywords: concrete, fractal method, paste thickness, water thickness, workability
Procedia PDF Downloads 37931564 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement
Authors: Young-San Shin, Seongsoo Lee
Abstract:
Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.Keywords: hall sensor, angle measurement, lookup table, arctangent
Procedia PDF Downloads 336