Search results for: film censorship
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1258

Search results for: film censorship

838 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia

Authors: Ted Silva

Abstract:

Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.

Keywords: pornography studies, queer cinema, French cinema, history

Procedia PDF Downloads 135
837 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications

Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner

Abstract:

Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.

Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane

Procedia PDF Downloads 352
836 Study of Laser Induced Damage Threshold in HfO₂/SiO₂ Multilayer Films after β-Ray Irradiation

Authors: Meihua Fang, Tao Fei

Abstract:

Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO₂/SiO₂ multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold (LIDT), which includes defects, surface roughness, packing density, and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm² to 12 J/cm², i.e., 50% increase, after the film has been irradiated by 2.2×10¹³/cm² β-ray, the particle irradiation can be used as a controllable and desirable post-processing method to improve the resistance to laser induced damage.

Keywords: β-ray irradiation, multilayer film, residual stress, laser-induced damage threshold

Procedia PDF Downloads 153
835 Exploring a Teaching Method for Elementary Students to Promote Cross-Cultural Understanding: Utilizing an American Film

Authors: Mikako Nobuhara

Abstract:

This study explores the effective methods of nurturing elementary students’ cross-cultural understanding. The delivery lecture was conducted in a private elementary school class for understanding cross-cultural differences through the film E.T. (1982). Interviews of care supporters and students were conducted, as well as student discussions were held after the class. The results were carefully observed and analyzed. Suitable findings were obtained, for instance, students’ listening skills improved; further, they deeply thought about the main character’s feelings after watching the movie. Moreover, their interest in studying English as a foreign language increased. In conclusion, more classes where students can express their opinions in front of the class need to be offered; this would enable the students to nurture their critical thinking abilities and build a sense of accomplishment when they are in elementary school. Utilizing films is one of the best ways to provide students good opportunities to engage in discussions on a specific theme. This is particularly true for elementary school students.

Keywords: cross-cultural understanding, English education, elementary schools, films

Procedia PDF Downloads 163
834 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 478
833 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids

Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis

Abstract:

Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).

Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures

Procedia PDF Downloads 327
832 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 187
831 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 251
830 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications

Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin

Abstract:

Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.

Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength

Procedia PDF Downloads 157
829 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in a vertical channels and tubes when there is an upward core flow of vapor (or gas-vapor mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapor-gas mixture (or pure vapor) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapor core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction.

Keywords: Reflux, Condensation, CFD-Two Phase, Nusselt number

Procedia PDF Downloads 363
828 Regulation of Cultural Relationship between Russia and Ukraine after Crimea’s Annexation: A Comparative Socio-Legal Study

Authors: Elena Sherstoboeva, Elena Karzanova

Abstract:

This paper explores the impact of the annexation of Crimea on the regulation of live performances and tour management of Russian pop music performers in Ukraine and of Ukrainian performers in Russia. Without a doubt, the cultural relationship between Russia and Ukraine is not limited to this issue. Yet concert markets tend to respond particularly rapidly to political, economic, and social changes, especially in Russia and Ukraine, where the high level of digital piracy means that the music businesses mainly depend upon income from performances rather than from digital rights sales. This paper argues that the rules formed in both countries after Russia’s annexation of Crimea in 2014 have contributed to the separation of a single cultural space that had existed in Soviet and Post-Soviet Russia and Ukraine before the annexation. These rules have also facilitated performers’ self-censorship and increased the politicisation of the music businesses in the two neighbouring countries. This study applies a comparative socio-legal approach to study Russian and Ukrainian live events and tour regulation. A qualitative analysis of Russian and Ukrainian national and intergovernmental legal frameworks is applied to examine formal regulations. Soviet and early post-Soviet laws and policies are also studied, but only to the extent that they help to track the changes in the Russian–Ukrainian cultural relationship. To identify and analyse the current informal rules, the study design includes in-depth semi-structured interviews with 30 live event or tour managers working in Russia and Ukraine. A case study is used to examine how the Eurovision Song Contest, an annual international competition, has played out within the Russian–Ukrainian conflict. The study suggests that modern Russian and Ukrainian frameworks for live events and tours have developed Soviet regulatory traditions when cultural policies served as a means of ideological control. At the same time, contemporary regulations mark a considerable perspective shift, as the previous rules have been aimed at maintaining close cultural connections between the Russian and Ukrainian nations. Instead of collaboration, their current frameworks mostly serve as forms of repression, implying that performers must choose only one national market in which to work. The regulatory instruments vary and often impose limitations that typically exist in non-democratic regimes to restrict foreign journalism, such as visa barriers or bans on entry. The more unexpected finding is that, in comparison with Russian law, Ukrainian regulations have created more obstacles to the organisation of live tours and performances by Russian artists in Ukraine. Yet this stems from commercial rather than political factors. This study predicts that the more economic challenges the Russian or Ukrainian music businesses face, the harsher the regulations will be regarding the organisation of live events or tours in the other country. This study recommends that international human rights organisations and non-governmental organisations develop and promote specific standards for artistic rights and freedoms, given the negative effects of the increasing politicisation of the entertainment business and cultural spheres to freedom of expression and cultural rights and pluralism.

Keywords: annexation of Crimea, artistic freedom, censorship, cultural policy

Procedia PDF Downloads 118
827 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 242
826 Effect of Multilayered MnBi Films on Magnetic and Microstructural Properties

Authors: Hyun-Sook Lee, Hongjae Moon, Hwaebong Jung, Sumin Kim, Wooyoung Lee

Abstract:

Low-temperature phase (LTP) of MnBi has attracted much attention because it has a larger coercivity than that of Nd-Fe-B at high temperature, which gives high potential as a permanent magnet material that can be used at such high temperature. We present variation in magnetic properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized condition of 350 °C and 1.5 hours. The composition ratio of Bi/Mn was adjusted by varying the thickness of Bi and Mn layers. The highest value of (BH)max ~ 8.6 MGOe at room temperature was obtained in one Bi/Mn bilayer with 34 nm Bi and 16 nm Mn. To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn bilayer up to five at which the total film thicknesses of Bi and Mn were fixed with 34 nm and 16 nm. The increase of coercivity was observed up to three layers from 4.8 kOe to 15.3 kOe and then suppression was appeared. A reversed behavior was exhibited in the magnetization. We found that these were closely related to a microstructural change of LTP-MnBi and a reduction of growth rate of LTP-MnBi by analyzing XRD and TEM results. We will discuss how the multilayered MnBi affects the magnetic properties in details.

Keywords: coercivity, MnBi, multilayer film, permanent magnet

Procedia PDF Downloads 334
825 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 232
824 Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films

Authors: Debarun Dhar Purkayastha, Talinungsang

Abstract:

SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation.

Keywords: nanocomposite, self-cleaning, superhydrophobic, surface energy

Procedia PDF Downloads 179
823 Investigation of the Morphology and Optical Properties of CuAlO₂ Thin Film

Authors: T. M. Aminu, A. Salisu, B. Abdu, H. U. Alhassan, T. H. Dharma

Abstract:

Thin films of CuAlO2 were deposited on clean glass substrate using the chemical solution deposition (sol-gel) method of deposition with CuCl and AlCl3 taken as the starting materials. CuCl was dissolved in HCl while AlCl₃ in distilled water, pH value of the mixture was controlled by addition of NaOH. The samples were annealed at different temperatures in order to determine the effect of annealing temperatures on the morphological and optical properties of the deposited CuAlO₂ thin film. The surface morphology reveals an improved crystalline as annealing temperature increases. The results of the UV-vis and FT-IR spectrophotometry indicate that the absorbance for all the samples decreases sharply from a common value of about 89% at about 329 nm to a range of values of 56.2%-35.2% and the absorption / extinction coefficients of the films decrease with increase in annealing temperature from 1.58 x 10⁻⁶ to1.08 x 10⁻⁶ at about 1.14eV in the infrared region to about 1.93 x 10⁻⁶ to 1.29 x 10⁻⁶ at about 3.62eV in the visible region, the transmittance, reflectance and band gaps vary directly with annealing temperature, the deposited films were found to be suitable in optoelectronic applications.

Keywords: copper aluminium-oxide (CuAlO2), absorbance, transmittance, reflectance, band gaps

Procedia PDF Downloads 294
822 Self-Assembly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid-State Dewetting: Toward Superior Wear and Corrosion Resistance

Authors: Ping Ren, Mao Wen, Kan Zhang, Weitao Zheng

Abstract:

The improvement of comprehensive properties including hardness, toughness, wear, and corrosion resistance in the transition metal carbides/nitrides TMCN films, especially avoiding the trade-off between hardness and toughness, is strongly required to adapt to various applications. Although incorporating ductile metal DM phase into the TMCN via thermally-induced phase separation has been emerged as an effective approach to toughen TMCN-based films, the DM is just limited to some soft ductile metal (i.e. Cu, Ag, Au immiscibility with the TMCN. Moreover, hardness is highly sensitive to soft DM content and can be significantly worsened. Hence, a novel preparation method should be attempted to broaden the DM selection and assemble much more ordered nanocomposite structure for improving the comprehensive properties. Here, we provide a new strategy, by activating solid-state dewetting during layered deposition, to accomplish the self-assembly of ordered TaC@Ta core-shell-like nanocomposite film consisting of TaC nanocrystalline encapsulated with thin pseudocrystal Ta tissue. That results in the superhard (~45.1 GPa) dominated by Orowan strengthening mechanism and high toughness attributed to indenter-induced phase transformation from the pseudocrystal to body-centered cubic Ta, together with the drastically enhanced wear and corrosion resistance. Furthermore, very thin pseudocrystal Ta encapsulated layer (~1.5 nm) in the TaC@Ta core-shell-like structure helps for promoting the formation of lubricious TaOₓ Magnéli phase during sliding, thereby further dropping the coefficient of friction. Apparently, solid-state dewetting may provide a new route to construct ordered TMC(N)@TM core-shell-like nanocomposite capable of combining superhard, high toughness, low friction, superior wear with corrosion resistance.

Keywords: corrosion, nanocomposite film, solid-state dewetting, tribology

Procedia PDF Downloads 135
821 Multimodal Discourse Analysis of Egyptian Political Movies: A Case Study of 'People at the Top Ahl Al Kemma' Movie

Authors: Mariam Waheed Mekheimar

Abstract:

Nascent research is conducted to the advancement of discourse analysis to include different modes as images, sound, and text. The focus of this study will be to elucidate how images are embedded with texts in an audio-visual medium as cinema to send political messages; it also seeks to broaden our understanding of politics beyond a relatively narrow conceptualization of the 'political' through studying non-traditional discourses as the cinematic discourse. The aim herein is to develop a systematic approach to film analysis to capture political meanings in films. The method adopted in this research is Multimodal Discourse Analysis (MDA) focusing on embedding visuals with texts. As today's era is the era of images and that necessitates analyzing images. Drawing on the writings of O'Halloran, Kress and Van Leuween, John Bateman and Janina Wildfeuer, different modalities will be studied to understand how those modes interact in the cinematic discourse. 'People at the top movie' is selected as an example to unravel the political meanings throughout film tackling the cinematic representation of the notion of social justice.

Keywords: Egyptian cinema, multimodal discourse analysis, people at the top, social justice

Procedia PDF Downloads 422
820 Effects of Flame Retardant Nano Bio-Filler on the Fire Behaviour of Thin Film Intumescent Coatings

Authors: Ming Chian Yew, Ming Kun Yew, Lip Huat Saw, Tan Ching Ng, Rajkumar Durairaj, Jing Han Beh

Abstract:

This paper analyzes the fire protection performance, char formation and heat release characteristics of the thin film intumescent coatings that incorporate waste eggshell (ES) as a nano bio-filler. In this study, the Bunsen burner and the fire propagation (BS 476: Part 6) tests of coatings were measured. Experiments on the samples were also tested to evaluate their fire behavior using a cone calorimeter according to ISO 5660-1 specifications. On exposure, the samples B, C and D had been certified to be Class 0 due to the fire propagation indexes of the samples were less than 12. Samples B and D showed a significant reduction in total heat rate (B=11.6 MJ/m² and D=12.0 MJ/m²) and uniform char structures with the addition of 3.30 wt.% and 2.75 wt.% ES nano bio-filler, respectively. As a result, ES nano bio-filler composition good to slow down the fire expanding and demonstrate better fire protection due to its positive synergistic effect with flame retardant ingredients on physical and chemical reactions in fire protection.

Keywords: cone calorimeter, eggshell, fire protection, heat release rate, intumescent coating

Procedia PDF Downloads 271
819 Anthropology of Women and War (1979-1988) in Iran: The Role of Islamic Republic Media

Authors: Mina Dousti

Abstract:

Like many women worldwide, and especially those living in the Middle East, Iranian women are struggling to have equal rights as men. The Islamic Republic regime, established in 1979, made this path even more difficult for Iranian women. Media and the Islamic Republic's powerful propaganda are the main factors and advertisers in omitting women's social rights and civic activities. Also, the hijab (veil), which became obligatory immediately after the revolution based on the Qur'an and religious Hadiths, was another way of suppressing women. Since the Islamic Republic Revolution and the following Iran-Iraq war (1980-1988), the Iranian female community has been experiencing different social and legal challenges. Aside from the Islamic regime's role in ignoring women, their families have also contributed to this limitation via unreasonable zeals and religious prejudices. Subsequently, all these factors led to pushing Iranian women to the corner and public dormancy. During the eight-year war, many Iranian women directly participated in the war front line. Although they became martyred, the regime intentionally ignored their public presence employing Islamic justifications and Sharia as an excuse. The government did these actions to justify censorship and unfairness toward women.

Keywords: Iranian women, Islamic Republic Regime, hijab, revolution, Iran-Iraq war, Martyr

Procedia PDF Downloads 146
818 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 163
817 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 71
816 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 259
815 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, scanning electron microscopy (SEM)

Procedia PDF Downloads 166
814 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings

Authors: S. Mahdavi, S.R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium

Procedia PDF Downloads 487
813 Psychological Reactance to Anti-Piracy Messages Explained by Gender and Attitudes

Authors: Kate Whitman, Zahra Murad, Joe Cox

Abstract:

Digital piracy is costly to creative economies across the world. Anti-piracy messages can cause people to pirate more rather than less, suggesting the presence of psychological reactance. Gender differences in message reactance and the moderating impact of attitudes have not been explored. In this paper, we examine whether messages based on real-world anti-piracy campaigns cause reactance and whether this effect is explained by gender and attitudes. An experiment compares two threatening and one prosocial message against a control group, with changes in piracy intention from past behavior for digital TV/film analysed. The results suggest that the prosocial message is ineffective for both genders. However, the threatening messages have significantly opposing effects on men and women. One threatening message influences women to reduce their piracy intentions by over 50% and men to increase it by 18%. Gender effects are moderated by pre-existing attitudes, with men and women who report the most favorable attitudes towards piracy having the most polarised changes in piracy intentions. The results suggest that men and women process threatening messages differently and that the creative industries should take care when targeting their messages.

Keywords: piracy, reactance, persuasive-messages, TV/film, gender

Procedia PDF Downloads 98
812 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure

Authors: Rajesh Agarwal

Abstract:

Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.

Keywords: capacitance, mobility, organic, thin film transistor

Procedia PDF Downloads 165
811 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco Tulio C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method

Procedia PDF Downloads 450
810 The Way Digitized Lectures and Film Presence Coaching Impact Academic Identity: An Expert Facilitated Participatory Action Research Case Study

Authors: Amanda Burrell, Tonia Gary, David Wright, Kumara Ward

Abstract:

This paper explores the concept of academic identity as it relates to the lecture, in particular, the digitized lecture delivered to a camera, in the absence of a student audience. Many academics have the performance aspect of the role thrust upon them with little or no training. For the purpose of this study, we look at the performance of the academic identity and examine tailored film presence coaching for its contributions toward academic identity, specifically in relation to feelings of self-confidence and diminishment of discomfort or stage fright. The case is articulated through the lens of scholar-practitioners, using expert facilitated participatory action research. It demonstrates in our sample of experienced academics, all reported some feelings of uncertainty about presenting lectures to camera prior to coaching. We share how power poses and reframing fear, produced improvements in the ease and competency of all participants. We share exactly how this insight could be adapted for self-coaching by any academic when called to present to a camera and consider the relationship between this and academic identity.

Keywords: academic identity, digitized lecture, embodied learning, performance coaching

Procedia PDF Downloads 337
809 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki

Abstract:

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Keywords: carrier lifetime, impedance, nano-textured, photocurrent

Procedia PDF Downloads 233