Search results for: binary labels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 818

Search results for: binary labels

398 Health Literacy for Self-Care by Female Patients Diagnosed with Diabetes at a Selected Hospital in Limpopo Province of South Africa

Authors: Nditsheni Ramakuela, Sonto Maputle, Base Khoza, Augustine Tugli

Abstract:

Inadequate health literacy can cause difficulties in understanding and compliance to treatment plan. With diabetic condition, self-care activities include behaviours of following a diet plan, avoiding high fat foods, increased exercise, self-glucose monitoring, and foot care. Patients with poor health literacy have difficulty interpreting medication warning labels, following directions on a prescription label and identifying their medications. Difficulties in understanding and performing self-care and health-related activities may ultimately lead to poor health outcomes. The study explored and described factors affecting health literacy and self-care to diabetic regimen by female patients at selected hospital in Limpopo Province of South Africa. Qualitative and explorative research design was used. Female patients who were admitted and diagnosed with diabetes in female medical ward constituted the study population. Non-probability, purposive sampling was used to select 20 female patients diagnosed with diabetes, who were above 18 years and admitted during April–November 2014. An in-depth face-to-face, unstructured interview was used to collect data. Data were analysed using open coding method. Measures to ensure trustworthiness and ethical considerations were adhered to. Findings revealed factors affecting health literacy for diabetic self-care activities amongst patients were; patient, family, disease and facility related. Proposed recommendations were; to strengthen diabetes education and patient-provider partnership. This is important and must be transferred to strengthen self-care activities to fully benefit the patient.

Keywords: compliance, diabetes mellitus, diabetic regimen, health literacy, self activities

Procedia PDF Downloads 287
397 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 570
396 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
395 Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression-salt- peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 435
394 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 433
393 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 178
392 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform

Authors: Ali A. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption

Procedia PDF Downloads 497
391 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 222
390 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 262
389 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 328
388 Clustering Based Level Set Evaluation for Low Contrast Images

Authors: Bikshalu Kalagadda, Srikanth Rangu

Abstract:

The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.

Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization

Procedia PDF Downloads 352
387 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 128
386 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application

Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro

Abstract:

This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.

Keywords: item response theory, dimensionality, submodel theory, factorial analysis

Procedia PDF Downloads 372
385 Telemedicine for Substance-Related Disorders: A Patient Satisfaction Survey among Individuals in Argentina

Authors: Badino Manuel, Farias Maria Alejandra

Abstract:

Telemedicine (TM) has the potential to develop efficient and cost-effective means for delivering quality health care services and outcomes, showing equal or, in some cases, better results than in-person treatment. To analyze patient satisfaction with the use of TM becomes relevant because this can affect the results of treatment and the adherence to it. The aim is to assess patient satisfaction with telemedicine for treating substance-related disorders in a mental health service in Córdoba, Argentina. A descriptive cross-sectional study was conducted among patients with substance-related disorders (N=115). A patient satisfaction survey was conducted from December 2021 to March 2022. For a total of 115 participants, 59,1% were male, 38,3% were female and 2,6% non-binary. In relation to educational status, 40% finished university, 39,1% high school, and 20,9 % only primary school. Regarding age, 4,3 % were young, 92,2% were adults, and 3,5% were elderly. Regarding TM treatment, 95,7% reported being satisfied. Furthermore, 85,2% of users declared that they would continueTM treatment, and 14,8% said that they would not resume TM treatment. To conclude, high levels of patient satisfaction contributes to the continuity of TM modality.

Keywords: telemedicine, mental health, substance-related disorders, patient satisfaction

Procedia PDF Downloads 108
384 Complex Decision Rules in the Form of Decision Trees

Authors: Avinash S. Jagtap, Sharad D. Gore, Rajendra G. Gurao

Abstract:

Decision rules become more and more complex as the number of conditions increase. As a consequence, the complexity of the decision rule also influences the time complexity of computer implementation of such a rule. Consider, for example, a decision that depends on four conditions A, B, C and D. For simplicity, suppose each of these four conditions is binary. Even then the decision rule will consist of 16 lines, where each line will be of the form: If A and B and C and D, then action 1. If A and B and C but not D, then action 2 and so on. While executing this decision rule, each of the four conditions will be checked every time until all the four conditions in a line are satisfied. The minimum number of logical comparisons is 4 whereas the maximum number is 64. This paper proposes to present a complex decision rule in the form of a decision tree. A decision tree divides the cases into branches every time a condition is checked. In the form of a decision tree, every branching eliminates half of the cases that do not satisfy the related conditions. As a result, every branch of the decision tree involves only four logical comparisons and hence is significantly simpler than the corresponding complex decision rule. The conclusion of this paper is that every complex decision rule can be represented as a decision tree and the decision tree is mathematically equivalent but computationally much simpler than the original complex decision rule

Keywords: strategic, tactical, operational, adaptive, innovative

Procedia PDF Downloads 286
383 Anti-Intellectualism in Populist Discourse and Its Role in Identity Construction: A Comparative Study between the United States of America and France

Authors: Iuliana-Erika Köpeczi

Abstract:

‘Language is no longer regarded as peripheral to our grasp of the world we live in, but as central to it. Words are not mere vocal labels or communicational adjuncts superimposed upon an already given order of things. They are collective products of social interaction, essential instruments through which human beings constitute and articulate their world’, said Roy Harris. If we were to accept the above-mentioned premise, then we surely must accept that discourse, generally, - and political discourse, specifically -, bears a crucial importance to one’s perception of reality. The way in which political rhetoric constructs reality changes the relationship between the voter and his/her view of the world, which, in turn, influences greatly the future trends of political participation. In this context, our inquiry focuses on the role of populist discourses in the post 9/11 political rhetoric, and how this led to the formation, construction and reconstruction of identity within the ‘us’ vs. ‘them’ dichotomy. It is our hypothesis that anti-intellectualistic elements played a significant role in the manner in which identity construction had been carried out on a discursive level. By adopting a comparative approach, we intend to identify the similarities and differences between the use of such anti-intellectualist elements in the United States of America on one hand – within the discourse of Rick Santorum, – and France on the other – with Marine le Pen’s discourse. Our methodological approach uses close textual analysis of primary source material (discourse analysis); historical contextualization of both primary documents and broader socio-political and cultural framework through archival research and secondary sources; as well as interpretation of primary texts through theoretical frameworks (qualitative research). We hope that the output of our endeavor will be useful in better understanding the different correlations that exist between anti-intellectualism and populism and how the interactions between these two elements aids in political identity construction through discourse.

Keywords: anti-intellectualism, discourse theory, France, identity construction, populism, United States of America

Procedia PDF Downloads 306
382 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 164
381 Estimating Visitor’s Willingness to Pay for the Conservation Fund: Sustainable Financing Approach in Protected Areas in Ethiopia

Authors: Sintayehu Aynalem Aseres, Raminder Kaur Sira

Abstract:

Increasingly, protected areas have been confronting with inadequate conservation funds that make it tough to antithesis the continuing of annihilation. The problem is even grave in developing countries, where Protected Areas (Pas) are mainly government-administered. Subsequently, it needs a strong effort to toughen the self-financing capability of PAs by ripening alternative sources of sustainable financing for realizing the conservation goals, in particular, to save the remaining natural planet. This study, therefore, designed to estimate visitors’ willingness to pay (WTP) for the additional conservation fees using a contingent valuation method. The effect relationship between WTP and both socio-demographic and non-economic factors was scrutinized by binary logistic regression. The mean WTP of foreign visitors has estimated at US$ 7.4 and for that of domestic visitors at US$1, with annual aggregate revenue of US$29, 200. The WTP was strongly influenced by income, satisfaction, environmental concern and attitude. The study has policy implications for the conservationists and park authorities to estimate the non-use values of PAs for developing market-based conservation instruments.

Keywords: conservation, ecotourism, sustainable financing, willingness to pay, protected areas, bale mountains national park

Procedia PDF Downloads 161
380 A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression

Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane

Abstract:

Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression.

Keywords: image compression, arithmetic coding, Run Length Coding, RLC, Sorted Run Length Coding, SRLC, Meteosat Second Generation, MSG

Procedia PDF Downloads 354
379 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 173
378 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.

Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit

Procedia PDF Downloads 71
377 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 106
376 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 295
375 Determinants of Child Anthropometric Indicators: A Case Study of Mali in 2015

Authors: Davod Ahmadigheidari

Abstract:

The main objective of this study was to explore prevalence of anthropometric indicators as well the factors associated with the anthropometric indications in Mali. Data on 2015, downloaded from the website of Unicef, were analyzed. A total of 16,467 women (ages 15-49 years) and 16,467 children (ages 0-59 months) were selected for the sample. Different statistical analyses, such as descriptive, crosstabs and binary logistic regression form the basis of this study. Child anthropometric indicators (i.e., wasting, stunting, underweight and BMI for age) were used as the dependent variables. SPSS Syntax from WHO was used to create anthropometric indicators. Different factors, such as child’s sex, child’s age groups, child’s diseases symptoms (i.e., diarrhea, cough and fever), maternal education, household wealth index and area of residence were used as independent variables. Results showed more than forty percent of Malian households were in nutritional crises (stunting (42%) and underweight (34%). Findings from logistic regression analyses indicated that low score of wealth index, low maternal education and experience of diarrhea in last two weeks increase the probability of child malnutrition.

Keywords: Mali, wasting, stunting, underweight, BMI for age and wealth index

Procedia PDF Downloads 155
374 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 205
373 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 490
372 Indentifying Critical Factors Influencing Timeshare Purchases in India

Authors: Shivam Kushwaha, Veena Bansal

Abstract:

Timeshare refers to real estate that is owned simultaneously by many, for a specified time in a year, for a specified numbers of years and is maintained and managed by an agency. Timeshare falls under the umbrella of tourism and is often used for vacation. Timeshare industry has attracted significantly less number of customers in India as compared to the US and Europe. In more than 40 years of existence of timeshare industry, it has not been able to grow its roots among Indian customers. The purpose of the study: To explore perception of Indian customers towards the adoption of timeshare segment of the hospitality industry and identify the factors. Source of data: Survey has been done on existing owners of holidays memberships, resorts or those who at least tourism experience in their past purchases. Methodology: Logistic Regression is used to predict binary responses of the customers based on identified critical factors which might influence timeshare purchases. Result: The study identified four factors: discretionary income, exchange options, ownership pride, risk, and measured their influence on intention to purchases in India. It is recognized that is all four variables are statistically significant while explaining in purchase intentions of customers in India.

Keywords: timeshare, holiday, tourism, customer perception, intent to use, Indian tourism

Procedia PDF Downloads 297
371 Coronavirus Academic Paper Sorting Application

Authors: Christina A. van Hal, Xiaoqian Jiang, Luyao Chen, Yan Chu, Robert D. Jolly, Yaobin Lin, Jitian Zhao, Kang Lin Hsieh

Abstract:

The COVID-19 Literature Summary App was created for the primary purpose of enabling academicians and clinicians to quickly sort through the vast array of recent coronavirus publications by topics of interest. Multiple methods of summarizing and sorting the manuscripts were created. A summary page introduces the application function and capabilities, while an interactive map provides daily updates on infection, death, and recovery rates. A page with a pivot table allows publication sorting by topic, with an interactive data table that allows sorting topics by columns, as wells as the capability to view abstracts. Additionally, publications may be sorted by the medical topics they cover. We used the CORD-19 database to compile lists of publications. The data table can sort binary variables, allowing the user to pick desired publication topics, such as papers that describe COVID-19 symptoms. The application is primarily designed for use by researchers but can be used by anybody who wants a faster and more efficient means of locating papers of interest.

Keywords: COVID-19, literature summary, information retrieval, Snorkel

Procedia PDF Downloads 152
370 A Characterization of Skew Cyclic Code with Complementary Dual

Authors: Eusebio Jr. Lina, Ederlina Nocon

Abstract:

Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.

Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals

Procedia PDF Downloads 344
369 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach

Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic

Abstract:

The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.

Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning

Procedia PDF Downloads 185