Search results for: and coal mining industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6510

Search results for: and coal mining industry

6090 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
6089 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 885
6088 The Impact of Audit Committee Industry Expertise on Internal Audit Function

Authors: Abdulaziz Alzeban

Abstract:

This study examines whether internal audit function is indeed greater when audit committee members have industry expertise combined with auditing expertise. Data from a survey of 64 chief internal auditors from companies registered on the Saudi Stock Exchange TADAWL, provides results that suggest that when audit committee members possess both industry expertise and auditing expertise, the committee’s role in improving the quality of internal audit is enhanced. This outcome is concluded as one that can be generalized beyond the Saudi Arabian context.

Keywords: internal audit, audit committee, industry expertise, function

Procedia PDF Downloads 357
6087 Sustainability in Tourism and Hospitality Industry in China: Best Practices and Challenges

Authors: Mkhitaryan Davit

Abstract:

The tourism and hospitality industry plays a significant role in China's economy, but it also poses environmental, social, and economic challenges. This paper examines the concept of sustainability within the context of China's tourism and hospitality industry, exploring best practices from 26 Hotels in 15 cities and identifying key challenges. Drawing upon a comprehensive review of existing literature, case studies, and interviews with industry experts, the paper highlights successful sustainability initiatives implemented by various stakeholders, including government bodies, businesses, and non-governmental organizations. Additionally, it discusses the barriers and obstacles hindering the widespread adoption of sustainable practices in the sector, such as lack of awareness, financial constraints, and regulatory issues. The findings provide insights for policymakers, industry practitioners, and researchers to develop strategies and solutions for promoting sustainable tourism and hospitality practices in China, ultimately contributing to the long-term viability and resilience of the industry.

Keywords: sustainability, waste management, renewable energy, hospitality

Procedia PDF Downloads 52
6086 Construction 4.0: The Future of the Construction Industry in South Africa

Authors: Temidayo. O. Osunsanmi, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The construction industry is a renowned latecomer to the efficiency offered by the adoption of information technology. Whereas, the banking, manufacturing, retailing industries have keyed into the future by using digitization and information technology as a new approach for ensuring competitive gain and efficiency. The construction industry has yet to fully realize similar benefits because the adoption of ICT is still at the infancy stage with a major concentration on the use of software. Thus, this study evaluates the awareness and readiness of construction professionals towards embracing a full digitalization of the construction industry using construction 4.0. The term ‘construction 4.0’ was coined from the industry 4.0 concept which is regarded as the fourth industrial revolution that originated from Germany. A questionnaire was utilized for sourcing data distributed to practicing construction professionals through a convenience sampling method. Using SPSS v24, the hypotheses posed were tested with the Mann Whitney test. The result revealed that there are no differences between the consulting and contracting organizations on the readiness for adopting construction 4.0 concepts in the construction industry. Using factor analysis, the study discovers that adopting construction 4.0 will improve the performance of the construction industry regarding cost and time savings and also create sustainable buildings. In conclusion, the study determined that construction professionals have a low awareness towards construction 4.0 concepts. The study recommends an increase in awareness of construction 4.0 concepts through seminars, workshops and training, while construction professionals should take hold of the benefits of adopting construction 4.0 concepts. The study contributes to the roadmap for the implementation of construction industry 4.0 concepts in the South African construction industry.

Keywords: building information technology, Construction 4.0, Industry 4.0, smart site

Procedia PDF Downloads 410
6085 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners

Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz

Abstract:

The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.

Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education

Procedia PDF Downloads 211
6084 Solutions of Thickening the Sludge from the Wastewater Treatment by a Rotor with Bars

Authors: Victorita Radulescu

Abstract:

Introduction: The sewage treatment plants, in the second stage, are formed by tanks having as main purpose the formation of the suspensions with high possible solid concentration values. The paper presents a solution to produce a rapid concentration of the slurry and sludge, having as main purpose the minimization as much as possible the size of the tanks. The solution is based on a rotor with bars, tested into two different areas of industrial activity: the remediation of the wastewater from the oil industry and, in the last year, into the mining industry. Basic Methods: It was designed, realized and tested a thickening system with vertical bars that manages to reduce sludge moisture content from 94% to 87%. The design was based on the hypothesis that the streamlines of the vortices detached from the rotor with vertical bars accelerate, under certain conditions, the sludge thickening. It is moved at the lateral sides, and in time, it became sediment. The formed vortices with the vertical axis in the viscous fluid, under the action of the lift, drag, weight, and inertia forces participate at a rapid aggregation of the particles thus accelerating the sludge concentration. Appears an interdependence between the Re number attached to the flow with vortex induced by the vertical bars and the size of the hydraulic compaction phenomenon, resulting from an accelerated process of sedimentation, therefore, a sludge thickening depending on the physic-chemical characteristics of the resulting sludge is projected the rotor's dimensions. Major findings/ Results: Based on the experimental measurements was performed the numerical simulation of the hydraulic rotor, as to assure the necessary vortices. The experimental measurements were performed to determine the optimal height and the density of the bars for the sludge thickening system, to assure the tanks dimensions as small as possible. The time thickening/settling was reduced by 24% compared to the conventional used systems. In the present, the thickeners intend to decrease the intermediate stage of water treatment, using primary and secondary settling; but they assume a quite long time, the order of 10-15 hours. By using this system, there are no intermediary steps; the thickening is done automatically when are created the vortices. Conclusions: The experimental tests were carried out in the wastewater treatment plant of the Refinery of oil from Brazi, near the city Ploiesti. The results prove its efficiency in reducing the time for compacting the sludge and the smaller humidity of the evacuated sediments. The utilization of this equipment is now extended and it is tested the mining industry, with significant results, in Lupeni mine, from the Jiu Valley.

Keywords: experimental tests, hydrodynamic modeling, rotor efficiency, wastewater treatment

Procedia PDF Downloads 118
6083 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 169
6082 Effect of Bacillus Pumilus Strains on Heavy Metal Accumulation in Lettuce Grown on Contaminated Soil

Authors: Sabeen Alam, Mehboob Alam

Abstract:

The research work entitled “Effect of Bacillus pumilus strains on heavy metal accumulation in lettuce grown on contaminated soil” focused on functional role of Bacillus pumilus strains inoculated with lettuce seed in mitigating heavy metal in chromite mining soil. In this experiment, factor A was three Bacillus pumilus strains (sequence C-2PMW-8, C-1 SSK-8 and C-1 PWK-7) while soil used for this experiment was collected from Prang Ghar mining site and lettuce seeds were grown in three levels of chromite mining soil (2.27, 4.65 and 7.14 %). For mining soil minimum days to germinate noted in lettuce grown on garden soil inoculated with sequence. Maximum germination percentage noted was for C-1 SSK-8 grown on garden soil, maximum lettuce height for sequence C-2 PWM-8, fresh leaf weight for C-1 PWK-7 inoculated lettuce, dry weight of lettuce leaf for lettuce inoculated with C-1 SSK-8 and C-1 PWK-7 strains, number of leaves per plant for lettuce inoculated with C-1 SSK-8, leaf area for C-2 PMW-8 inoculated lettuce, survival percentage for C-1 SSK-8 treated lettuce and chlorophyll content for C-2 PMW-8. Results related to heavy metals accumulation showed that minimum chromium was in lettuce and in soil for all three sequences, cadmium (Cd) in lettuce and in soil for all three sequences, manganese (Mn) in lettuce and in soil for three sequences, lead (Pb) in lettuce and in soil for three sequences. It can be concluded that chromite mining soil significantly reduced the growth and survival of lettuce, but when lettuce was inoculated with Bacillus.pumilus strains, it enhances growth and survival. Similarly, minimum heavy metal accumulation in plant and soil, regardless of type of Bacillus pumilus used, all three sequences has same mitigating effect on heavy metal in both soil and lettuce. All the three Bacillus pumilus strains ensured reduction in heavy metals content (Mn, Cd, Cr) in lettuce, below the maximum permissible limits of WHO 2011.

Keywords: bacillus pumilus, heavy metals, permissible limits, lettuce, chromite mining soil, mitigating effect

Procedia PDF Downloads 60
6081 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 403
6080 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic

Procedia PDF Downloads 335
6079 Micro Grids, Solution to Power Off-Grid Areas in Pakistan

Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir

Abstract:

In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.

Keywords: micro grids, distribution generation, PV, off-grid operations

Procedia PDF Downloads 312
6078 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 99
6077 Assessment of Impact of Manpower Training and Development in the Construction Industry

Authors: Olalekan Bamidele Aruleba

Abstract:

This research assessed the impact of manpower training and development in the construction industry. The aim is to determine the effect of training and development on employees for effective organizational growth in the construction industry to identify the training method for each category of employee in the construction industry, challenges to training and development of workers in the construction industry and impact of manpower training and development on employees and employers. Data for the study were obtained through a well-structured questionnaire administered to building professionals in Nigeria construction firm. Eighty (80) questionnaires were distributed among building professionals in three selected local governments within Ondo State and sixty-four (64) were returned. Data collected were analysed using descriptive statistics and ranking. Findings of the study revealed that in house training and in-service training methods were preferred by most construction industry. It concluded that the attitude of top management and lack of fund was seen as the significant challenges militating against training of employees. The study recommended that manpower training and development must be sustained by all stakeholders in the industry in order to improve workers' productivity; the organization should adopt the right method in training each category of employees and carry out the need assessment for training to avoid training wrong employees.

Keywords: construction, development, manpower, training

Procedia PDF Downloads 234
6076 An Example of University Research Driving University-Industry Collaboration

Authors: Stephen E. Cross, Donald P. McConnell

Abstract:

In the past decade, market pressures and decreasing U.S. federal budgets for science and technology have led to a fundamental change in expectations for corporate investments in innovation. The trend to significant, sustained corporate research collaboration with major academic centres has called for rethinking the balance between academic and corporate roles in these relationships. The Georgia Institute of Technology has developed a system-focused strategy for transformational research focused on grand challenges in areas of importance both to faculty and to industry collaborators. A model of an innovation ecosystem is used to guide both research and university-industry collaboration. The paper describes the strategy, the model, and the results to date including the benefits both to university research and industry collaboration. Key lessons learned are presented based on this experience.

Keywords: ecosystem, industry collaboration, innovation, research strategy

Procedia PDF Downloads 420
6075 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms

Authors: Naina Mahajan, Bikram Pal Kaur

Abstract:

The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.

Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool

Procedia PDF Downloads 338
6074 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry

Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari

Abstract:

The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.

Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining

Procedia PDF Downloads 77
6073 Software Quality Measurement System for Telecommunication Industry in Malaysia

Authors: Nor Fazlina Iryani Abdul Hamid, Mohamad Khatim Hasan

Abstract:

Evolution of software quality measurement has been started since McCall introduced his quality model in year 1977. Starting from there, several software quality models and software quality measurement methods had emerged but none of them focused on telecommunication industry. In this paper, the implementation of software quality measurement system for telecommunication industry was compulsory to accommodate the rapid growth of telecommunication industry. The quality value of the telecommunication related software could be calculated using this system by entering the required parameters. The system would calculate the quality value of the measured system based on predefined quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). Thus, software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry.

Keywords: software quality, quality measurement, quality model, quality metric, net satisfaction index

Procedia PDF Downloads 592
6072 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: classification, data mining, decision tree, scholarship

Procedia PDF Downloads 376
6071 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model

Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda

Abstract:

Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.

Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.

Procedia PDF Downloads 76
6070 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: semantic links, data mining, linked data, SKOS

Procedia PDF Downloads 179
6069 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain

Authors: Xiangrong Liu, Chuanhui Xiong

Abstract:

With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.

Keywords: photovoltaic, supply chain, inventory policy, base-stock policy

Procedia PDF Downloads 348
6068 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
6067 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 124
6066 Heritage Value and Industrial Tourism Potential of the Urals, Russia

Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov

Abstract:

Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.

Keywords: industrial heritage, mining heritage, Central Urals, Russia

Procedia PDF Downloads 136
6065 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 416
6064 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry

Authors: Alina Petronela Negrea, Valentin Cojanu

Abstract:

The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.

Keywords: automotive industry, entrepreneurship, innovation, Romania

Procedia PDF Downloads 549
6063 A Study on the Strategy for Domestic Space Industry Activation

Authors: Hangil Park, Hwayeon Song, Jingyung Sim

Abstract:

In this study, a business ecosystem of a domestic space industry is comprehensively analyzed to derive the influence factors. The priority level of each element as well as the disparity between the ideal and reality are investigated through a literature review and an expert survey. The three major influence factors determined are: (a) investment scale and approach, (b) propulsion system, and (c) industrialization with overseas expansion. Related issues based on the current status are evaluated, followed by a proposed activation strategy. This research's findings offer a direction for R&D budget allocation and law system maintenance for the activation of the domestic space industry.

Keywords: space industry, activation, strategy, business ecosystem

Procedia PDF Downloads 368
6062 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. Despite it is very important, the research study on schedule waste management is very little in the highway industry even though there is a rapid growth of highway operation in the Asian region. It should be noted that there are many unnoticeable wastes in highway industry that should be managed properly. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as compared to factories in which the factories are located on specified areas whereas, highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations, 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on schedule waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of scheduled waste such as cancer, throat irritation and respiration problem.

Keywords: Asia region, environment, highway industry, scheduled waste

Procedia PDF Downloads 422
6061 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 54