Search results for: analog signal processing
4744 Signals Monitored During Anaesthesia
Authors: Launcelot McGrath
Abstract:
A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.Keywords: biological signals, signal acquisition, anaesthesiology, patient monitoring
Procedia PDF Downloads 1384743 A Low-Cost of Foot Plantar Shoes for Gait Analysis
Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari
Abstract:
This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.Keywords: gait analysis, plantar pressure, force plate, earable sensor
Procedia PDF Downloads 4534742 Design of Low Power FSK Receiver
Authors: M. Aeysha Parvin, J. Asha, J. Jenifer
Abstract:
This letter presents a novel frequency-shift keying(FSK) receiver using PLL-based FSK demodulator, thereby achieving high sensitivity and low power consumption. The proposed receiver comprises a power amplifier, mixer, 3-stage ring oscillator, PLL based demodulator. Moreover, the proposed receiver is fabricated using 0.12µm CMOS process and consumes 0.7Mw. Measurement results demonstrate that the proposed receiver has a sensitivity of -93dbm with 1Mbps data rate in receiving a 2.4 GHz FSK signal.Keywords: CMOS FSK receiver, phase locked loop (PLL), 3-stage ring oscillator, FSK signal
Procedia PDF Downloads 4974741 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals
Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail
Abstract:
A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.Keywords: array signal processing, direction-of-arrival, antenna arrays, Eigenvalues, Eigenvectors, Lagrange multiplier
Procedia PDF Downloads 3344740 Design and Implementation of A 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply.Keywords: successive approximation register analog-to-digital converter, SAR ADC, resistive DAC, programmable reference
Procedia PDF Downloads 5184739 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, resovist, field strength, relaxivity, signal intensity
Procedia PDF Downloads 3524738 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 1434737 Development of a Serial Signal Monitoring Program for Educational Purposes
Authors: Jungho Moon, Lae-Jeong Park
Abstract:
This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.Keywords: digital sensor, MATLAB, MCU, signal monitoring program
Procedia PDF Downloads 4964736 Teaching Tools for Web Processing Services
Authors: Rashid Javed, Hardy Lehmkuehler, Franz Josef-Behr
Abstract:
Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite.Keywords: deegree, interpolation, IDW, web processing service (WPS)
Procedia PDF Downloads 3554735 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method
Authors: R. R. Hordijk, O. J. G. Somsen
Abstract:
Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.Keywords: image processing, image recognition, polynomial fit, water
Procedia PDF Downloads 5344734 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links
Authors: Alaa Abdullah Altaee
Abstract:
This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication
Procedia PDF Downloads 1204733 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection
Procedia PDF Downloads 4004732 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).Keywords: power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power
Procedia PDF Downloads 4744731 Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques
Authors: Subodh Chandra Shakya, Rajendra Sapkota, Aakash Tamang, Shushant Pudasaini, Sujan Adhikari, Sajjan Adhikari
Abstract:
Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system.Keywords: chunking, document similarity, information extraction, natural language processing, word2vec, word embedding
Procedia PDF Downloads 1584730 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 1654729 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1074728 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3604727 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1624726 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2454725 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length
Procedia PDF Downloads 1784724 Giant Achievements in Food Processing
Authors: Farnaz Amidi Fazli
Abstract:
After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation
Procedia PDF Downloads 3214723 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 1454722 Decision Making, Reward Processing and Response Selection
Authors: Benmansour Nassima, Benmansour Souheyla
Abstract:
The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.Keywords: decision-making, motivation, alteration, reward processing, response selection
Procedia PDF Downloads 4774721 A Multi Function Myocontroller for Upper Limb Prostheses
Authors: Ayad Asaad Ibrahim
Abstract:
Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller
Procedia PDF Downloads 3634720 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1564719 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 4434718 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions
Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev
Abstract:
Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.Keywords: air-electronic, geometrical parameters, improvement, measurement systems
Procedia PDF Downloads 2264717 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 2224716 The Use of Image Processing Responses Tools Applied to Analysing Bouguer Gravity Anomaly Map (Tangier-Tetuan's Area-Morocco)
Authors: Saad Bakkali
Abstract:
Image processing is a powerful tool for the enhancement of edges in images used in the interpretation of geophysical potential field data. Arial and terrestrial gravimetric surveys were carried out in the region of Tangier-Tetuan. From the observed and measured data of gravity Bouguer gravity anomalies map was prepared. This paper reports the results and interpretations of the transformed maps of Bouguer gravity anomaly of the Tangier-Tetuan area using image processing. Filtering analysis based on classical image process was applied. Operator image process like logarithmic and gamma correction are used. This paper also present the results obtained from this image processing analysis of the enhancement edges of the Bouguer gravity anomaly map of the Tangier-Tetuan zone.Keywords: bouguer, tangier, filtering, gamma correction, logarithmic enhancement edges
Procedia PDF Downloads 4224715 Bank ATM Monitoring System Using IR Sensor
Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari
Abstract:
This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver
Procedia PDF Downloads 310