Search results for: temperature dependent viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9625

Search results for: temperature dependent viscosity

5185 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 212
5184 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 693
5183 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 236
5182 The Impact of Syntactic Priming on Language Learners’ Perception of Relative Clauses

Authors: Kaine Gulozer

Abstract:

Listening comprehension in a foreign language context has been a constant challenge for Turkish speakers of English. Syntactic priming (SP) of relative clauses might affect the perception of subsequent sentences of identical structure and this could have an impact on the listening comprehension of second or foreign language learners. There has been little attempt to investigate the syntactic priming of English subject relative clauses and object relative clauses in relation to perception for the learners of English in Turkish context. This study investigates SP effects on low-proficiency EFL learners’ production of English relative clauses. Both qualitative and quantitative method along with a pre-test and post-test tasks were adopted, recruiting 62 EFL learners to receive a six-week listening instruction on relative clauses. Testing instruments for language production included the two tasks: (1) the visual- cued presentation and recall and (2) the auditory-cued presentation and recall. Students’ listening comprehension in task 1 and 2 were recorded and transcribed. Fifteen of the participants were also interviewed. The results of the dependent samples t-test analyses revealed that SP had a significant effect on the overall perception of relative clauses.

Keywords: listening comprehension, relative clauses, structural priming, syntactic persistance, syntactic priming

Procedia PDF Downloads 171
5181 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces

Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek

Abstract:

Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.

Keywords: moisture, mold growth, testing, wood

Procedia PDF Downloads 133
5180 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 536
5179 A Natural Killer T Cell Subset That Protects against Airway Hyperreactivity

Authors: Ya-Ting Chuang, Krystle Leung, Ya-Jen Chang, Rosemarie H. DeKruyff, Paul B. Savage, Richard Cruse, Christophe Benoit, Dirk Elewaut, Nicole Baumgarth, Dale T. Umetsu

Abstract:

We examined characteristics of a Natural Killer T (NKT) cell subpopulation that developed during influenza infection in neonatal mice, and that suppressed the subsequent development of allergic asthma in a mouse model. This NKT cell subset expressed CD38 but not CD4, produced IFN-γ, but not IL-17, IL-4 or IL-13, and inhibited the development of airway hyperreactivity (AHR) through contact-dependent suppressive activity against helper CD4 T cells. The NKT subset expanded in the lungs of neonatal mice after infection with influenza, but also after treatment of neonatal mice with a Th1-biasing α-GalCer glycolipid analogue, Nu-α-GalCer. These results suggest that early/neonatal exposure to infection or to antigenic challenge can affect subsequent lung immunity by altering the profile of cells residing in the lung and that some subsets of NKT cells can have direct inhibitory activity against CD4+ T cells in allergic asthma. Importantly, our results also suggest a potential therapy for young children that might provide protection against the development of asthma.

Keywords: NKT subset, asthma, airway hyperreactivity, hygiene hypothesis, influenza

Procedia PDF Downloads 240
5178 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 11
5177 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia

Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann

Abstract:

The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.

Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn

Procedia PDF Downloads 252
5176 Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation.

Keywords: cyclic, diffusion, isothermal, cyclic

Procedia PDF Downloads 919
5175 Electrokinetics and Stability of Solder Powders in Aqueous Media

Authors: Terence Lucero F. Menor, Manolo G. Mena, Herman D. Mendoza

Abstract:

Solder pastes are widely used in creating mechanical, thermal and electrical connection between electronic components. Continued miniaturization of consumer electronics drives manufacturers to achieve smaller, lighter, and faster electronic packages at low cost. This faces them to the difficult challenge of dispensing solder pastes in extremely precise and repeatable manner. The most common problem in solder paste dispensing is the clogging of dispensers which results from agglomeration and settling of solder powders leading to increase on the effective particle size and uneven distribution of particles in the mixture. In this work, microelectrophoresis was employed to investigate the effect of pH and KNO₃ concentration on the electrokinetic behavior and stability of SAC305, PbSn5Ag2.5 and Sn powders in aqueous media. Results revealed that the electrokinetic behavior of the three types of solder powders are similar, which was attributed to high SnO₂ content on the surface of the particles. Electrokinetic measurements showed that the zeta potentials of the solder powders are highly dependent on pH and KNO₃ concentration with isoelectric points ranging from 3.5 to 5.5. Results were verified using stability tests.

Keywords: electrokinetic behavior, isoelectric point, solder powder, stability, surface analysis

Procedia PDF Downloads 230
5174 Challenging Hegemonic Masculinity in Nigerian Hip Hop: An Evaluation of Gender Representation in Falz the Bahd Guy’s Moral Instruction Album

Authors: Adelaja O. Oriade

Abstract:

The Nigerian hip-hop music genre, like the African American scene where it was adopted from, is riddled with musical lyrics that amplify and normalize hypermasculinity, homophobia, sexism, and objectification of women. Several factors are responsible for this anomaly; however, the greatest factor is the urge of hip-hop musicians to achieve the commercial success that is dependent on selling records and appealing to the established societal accepted norm for hip-hop music. Consequently, this paper presents a counter-narrative of this gender representation within the Nigerian hip-hop industry. This study analyzed the musical lyrics of the ‘Hypocrisy’ track on the 2019 album of famous Nigerian rapper, Falz the Bahd Guy; and argued that Falz in this album challenged the predominant ideas of hegemonic masculinity by singing in favor of LGBT people and women. Also, based on the success of this album, this paper argues that a hip-hop album can achieve commercial success without aligning with predominant hip-hop parameters of gender representation. The study recommends that future studies should evaluate the reactions of Nigerians to these gender presentations by Falz the Bahd guy.

Keywords: hegemonic masculinity, hypermasculinity, LGBT, misogyny, sexism

Procedia PDF Downloads 126
5173 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions

Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud

Abstract:

When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.

Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort

Procedia PDF Downloads 295
5172 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim

Abstract:

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate

Procedia PDF Downloads 122
5171 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 178
5170 Effect of Climatic Change on the Life Activities of Schistocerca graria from Thar Desert, Sindh, Pakistan

Authors: Ahmed Ali Samejo, Riffat Sultana

Abstract:

Pakistan has the sandy Thar Desert in the eastern area, which share border line with India and has exotic fauna and flora, the livelihood of native people rely on livestock and rain fed cultivated fields. The climate of Thar Desert is very harsh and stressful due to frequent drought and very little rainfall, which may occur during monsoon season in the months of July to October and temperature is high, and wind speed also increases in April to June. Schistocerca gregaria is a destructive pest of vegetation from Mauritania to the border line of Pakistan and India. Sometimes they produce swarms which consume all plant where ever they land down and cause the loss in agro-economy of the world. During the recent study, we observed that vegetation was not unique throughout the Thar Desert in the year 2015, because the first spell of rainfall showered over all areas of the Thar Desert in July. However, the second and third spell of rain was confined to village Mahandre jo par and surroundings from August to October. Consequently, vegetation and cultivated crops grew up specially bajra crop (Pennistum glaucum). The climate of Mahandre jo par and surroundings became favorable for S.gregaria, and remaining areas of Thar Desert went hostile. Therefore desert locust attracted to the pleasant area (Mahandre jo par and surroundings) and gradually concentrated, increased reproductive activities, but did not gregarize due to the harvest of bajra crop and the onset of the winter season with an immediate decrease in temperature. An outbreak was near to come into existence, and thereupon conditions become stressful for hoppers to continue further development. Afore mentioned was one reason behind hurdle to the outbreak, another reason might be that migration and concentration of desert locust took place at the end of the season, so climate becomes unfavorable for hoppers, due to dryness of vegetation. Soils also become dry, because rainfall was not showered in end of the season, that’s why eggs that were deposited in late summer were desiccated. This data might be proved fruitful to forecast any outbreak update in future.

Keywords: agro-economy, destructive pest, climate, outbreak, vegetation

Procedia PDF Downloads 172
5169 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 171
5168 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 227
5167 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 135
5166 The Role of Contextual Factors in the Sustainability Reporting of Australian and New Zealand Companies

Authors: Ramona Zharfpeykan

Abstract:

The concept of sustainability is generally considered as a key topic in many countries, and sustainability reporting is becoming an important tool for companies to communicate their sustainability plans and performance to their stakeholders. There have been various studies on factors that may influence sustainability reporting in companies. This study examines the possible effect of some of the organisational factors on corporate sustainability reporting. The organisational factors included in this study are a company’s type (public or private), industry, and size as well as managers’ perception of the level of importance of indicators in reporting these indicators. A survey was conducted from 240 Australian and New Zealand companies in various industries. They were asked about their perception of the importance of sustainability indicators in their performance and if they report these indicators. The GRI indicators used to develop the survey. A multiple regression model was developed using reporting strategy score as dependent and type, size, industry categorisation, and managers’ perception of the level of importance of the GRI indicators as independent factors. The results show that among all the factors included in the model, size of a company and the perception of managers of the level of importance of environmental and labour practice indicators can affect the sustainability scores of these companies.

Keywords: sustainability reporting, global reporting initiative, sustainability reporting strategy, organisational features

Procedia PDF Downloads 159
5165 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization

Authors: Anastasios Rodis

Abstract:

Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.

Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization

Procedia PDF Downloads 440
5164 Exact Phase Diagram of High-TC Superconductors

Authors: Abid Boudiar

Abstract:

We propose a simple model to obtain an exact expression of Tc/(Tc,max) for the temperature-doping phase diagram of superconducting cuprates. We showed that our model predicted most phase diagram scenario. We found the exact special doping points p(opt), p(qcp) and an accurate E(g,max). Some other properties such as the stripes length 100.1°A and the energy gap in cuprates chain 6meV can also be calculated exactly. Another interesting consequence of this simple picture is the new magic numbers and the ability to express everything using a (Tc,p) diagram via the golden ratio.

Keywords: superconducting cuprates, phase, pseudogap, hole doping, strips, golden ratio, soliton

Procedia PDF Downloads 470
5163 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 137
5162 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 98
5161 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)

Authors: D. P. N. De Silva, N. P. P. Liyanage

Abstract:

Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.

Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae

Procedia PDF Downloads 716
5160 Model Based Fault Diagnostic Approach for Limit Switches

Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak

Abstract:

The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.

Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space

Procedia PDF Downloads 617
5159 Reduction of the Cellular Infectivity of SARS-CoV-2 by a Mucoadhesive Nasal Spray

Authors: Adam M. Pitz, Gillian L. Phillipson, Jayant E. Khanolkar, Andrew M. Middleton

Abstract:

New emerging evidence suggests that the nose is the predominant route for entry of the SARS-CoV-2 virus into the host. A virucidal suspension test (conforming in principle to the European Standard EN14476) was conducted to determine whether a commercial liquid gel intranasal spray containing 1% of the mucoadhesive hydroxypropyl methylcellulose (HPMC) could inhibit the cellular infectivity of the SARS-CoV-2 coronavirus. Virus was added to the test product samples and to controls in a 1:8 ratio and mixed with one part bovine serum albumin as an interfering substance. The test samples were pre-equilibrated to 34 ± 2°C (representing the temperature of the nasopharynx) with the temperature maintained at 34 ± 2°C for virus contact times of 1, 5 and 10 minutes. Neutralized aliquots were inoculated onto host cells (Vero E6 cells, ATCC CRL-1586). The host cells were then incubated at 36 ± 2°C for a period of 7 days. The residual infectious virus in both test and controls was detected by viral-induced cytopathic effect. The 50% tissue culture infective dose per mL (TCID50/mL) was determined using the Spearman-Karber method with results reported as the reduction of the virus titer due to treatment with test product, expressed as log10. The controls confirmed the validity of the results with no cytotoxicity or viral interference observed in the neutralized test product samples. The HPMC formulation reduced SARS-CoV-2 titer, expressed as log10TCID50, by 2.30 ( ± 0.17), 2.60 ( ± 0.19), and 3.88 ( ± 0.19) with the respective contact times of 1, 5 and 10 minutes. The results demonstrate that this 1% HPMC gel formulation can reduce the cellular infectivity of the SARS-CoV-2 virus with an increasing viral inhibition observed with increasing exposure time. This 1% HMPC gel is well tolerated and can reside, when delivered via nasal spray, for up to one hour in the nasal cavity. We conclude that this intranasal gel spray with 1% HPMC repeat-dosed every few hours may offer an effective preventive or early intervention solution to limit the transmission and impact of the SARS-CoV-2 coronavirus.

Keywords: hydroxypropyl methylcellulose, mucoadhesive nasal spray, respiratory viruses, SARS-CoV-2

Procedia PDF Downloads 146
5158 Computational Study of Chromatographic Behavior of a Series of S-Triazine Pesticides Based on Their in Silico Biological and Lipophilicity Descriptors

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

In this paper, quantitative structure-retention relationships (QSRR) analysis was applied in order to correlate in silico biological and lipophilicity molecular descriptors with retention values for the set of selected s-triazine herbicides. In silico generated biological and lipophilicity descriptors were discriminated using generalized pair correlation method (GPCM). According to this method, the significant difference between independent variables can be noticed regardless almost equal correlation with dependent variable. Using established multiple linear regression (MLR) models some biological characteristics could be predicted. Established MLR models were evaluated statistically and the most suitable models were selected and ranked using sum of ranking differences (SRD) method. In this method, as reference values, average experimentally obtained values are used. Additionally, using SRD method, similarities among investigated s-triazine herbicides can be noticed. These analysis were conducted in order to characterize selected s-triazine herbicides for future investigations regarding their biodegradability. This study is financially supported by COST action TD1305.

Keywords: descriptors, generalized pair correlation method, pesticides, sum of ranking differences

Procedia PDF Downloads 295
5157 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 179
5156 Thermodynamic Properties of Binary Gold-Rare Earth Compounds (Au-RE)

Authors: H. Krarchaa, A. Ferroudj

Abstract:

This work presents the results of thermodynamic properties of intermetallic rare earth-gold compounds at different stoichiometric structures. It mentions the existence of the AuRE AuRE2, Au2RE, Au51RE14, Au6RE, Au3RE and Au4RE phases in the majority of Au-RE phase diagrams. It's observed that equiatomic composition is a common compound for all gold rare earth alloys and it has the highest melting temperature. Enthalpies of the formation of studied compounds are calculated based on a new reformulation of Miedema’s model.

Keywords: rare earth element, enthalpy of formation, thermodynamic properties, macroscopic model

Procedia PDF Downloads 24