Search results for: multi-objective genetic algorithm
326 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 460325 Autophagy Promotes Vascular Smooth Muscle Cell Migration in vitro and in vivo
Authors: Changhan Ouyang, Zhonglin Xie
Abstract:
In response to proatherosclerotic factors such as oxidized lipids, or to therapeutic interventions such as angioplasty, stents, or bypass surgery, vascular smooth muscle cells (VSMCs) migrate from the media to the intima, resulting in intimal hyperplasia, restenosis, graft failure, or atherosclerosis. These proatherosclerotic factors also activate autophagy in VSMCs. However, the functional role of autophagy in vascular health and disease remains poorly understood. In the present study, we determined the role of autophagy in the regulation of VSMC migration. Autophagy activity in cultured human aortic smooth muscle cells (HASMCs) and mouse carotid arteries was measured by Western blot analysis of microtubule-associated protein 1 light chain 3 B (LC3B) and P62. The VSMC migration was determined by scratch wound assay and transwell migration assay. Ex vivo smooth muscle cell migration was determined using aortic ring assay. The in vivo SMC migration was examined by staining the carotid artery sections with smooth muscle alpha actin (alpha SMA) after carotid artery ligation. To examine the relationship between autophagy and neointimal hyperplasia, C57BL/6J mice were subjected to carotid artery ligation. Seven days after injury, protein levels of Atg5, Atg7, Beclin1, and LC3B drastically increased and remained higher in the injured arteries three weeks after the injury. In parallel with the activation of autophagy, vascular injury-induced neointimal hyperplasia as estimated by increased intima/media ratio. The en face staining of carotid artery showed that vascular injury enhanced alpha SMA staining in the intimal cells as compared with the sham operation. Treatment of HASMCs with platelet-derived growth factor (PDGF), one of the major factors for vascular remodeling in response to vascular injury, increased Atg7 and LC3 II protein levels and enhanced autophagosome formation. In addition, aortic ring assay demonstrated that PDGF treated aortic rings displayed an increase in neovessel formation compared with control rings. Whole mount staining for CD31 and alpha SMA in PDGF treated neovessels revealed that the neovessel structures were stained by alpha SMA but not CD31. In contrast, pharmacological and genetic suppression of autophagy inhibits VSMC migration. Especially, gene silencing of Atg7 inhibited VSMC migration induced by PDGF. Furthermore, three weeks after ligation, markedly decreased neointimal formation was found in mice treated with chloroquine, an inhibitor of autophagy. Quantitative morphometric analysis of the injured vessels revealed a marked reduction in the intima/media ratio in the mice treated with chloroquine. Conclusion: Autophagy activation increases VSMC migration while autophagy suppression inhibits VSMC migration. These findings suggest that autophagy suppression may be an important therapeutic strategy for atherosclerosis and intimal hyperplasia.Keywords: autophagy, vascular smooth muscle cell, migration, neointimal formation
Procedia PDF Downloads 314324 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia
Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov
Abstract:
An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.Keywords: HIV, resistance, mutations, treatment
Procedia PDF Downloads 93323 Surveillance of Artemisinin Resistance Markers and Their Impact on Treatment Outcomes in Malaria Patients in an Endemic Area of South-Western Nigeria
Authors: Abiodun Amusan, Olugbenga Akinola, Kazeem Akano, María Hernández-Castañeda, Jenna Dick, Akintunde Sowunmi, Geoffrey Hart, Grace Gbotosho
Abstract:
Introduction: Artemisinin-based Combination Therapy (ACTs) is the cornerstone malaria treatment option in most malaria-endemic countries. Unfortunately, the malaria control effort is constantly being threatened by resistance of Plasmodium falciparum to ACTs. The recent evidence of artemisinin resistance in East Africa and its possibility of spreading to other African regions portends an imminent health catastrophe. This study aimed at evaluating the occurrence, prevalence, and influence of artemisinin-resistance markers on treatment outcomes in Ibadan before and after post-adoption of artemisinin combination therapy (ACTs) in Nigeria in 2005. Method: The study involved day zero dry blood spot (DBS) obtained from malaria patients during retrospective (2000-2005) and prospective (2021) studies. A cohort in the prospective study received oral dihydroartemisinin-piperaquine and underwent a 42-day follow-up to observe treatment outcomes. Genomic DNA was extracted from the DBS samples using a QIAamp blood extraction kit. Fragments of P. falciparum kelch13 (Pfkelch13), P. falciparum coronin (Pfcoronin), P. falciparum multidrug resistance 2 (PfMDR2), and P. falciparum chloroquine resistance transporter (PfCRT) genes were amplified and sequenced on a sanger sequencing platform to identify artemisinin resistance-associated mutations. Mutations were identified by aligning sequenced data with reference sequences obtained from the National Center for Biotechnology Information. Data were analyzed using descriptive statistics and student t-tests. Results: Mean parasite clearance time (PCT) and fever clearance time (FCT) were 2.1 ± 0.6 days (95% CI: 1.97-2.24) and 1.3 ± 0.7 days (95% CI: 1.1-1.6) respectively. Four mutations, K189T [34/53(64.2%)], R255K [2/53(3.8%)], K189N [1/53(1.9%)] and N217H [1/53(1.9%)] were identified within the N-terminal (Coiled-coil containing) domain of Pfkelch13. No artemisinin resistance-associated mutation usually found within the β-propeller domain of the Pfkelch13 gene was found in these analyzed samples. However, K189T and R255K mutations showed a significant correlation with longer parasite clearance time in the patients (P<0.002). The observed Pfkelch13 gene changes did not influence the baseline mean parasitemia (P = 0.44). P76S [17/100 (17%)] and V62M [1/100 (1%)] changes were identified in the Pfcoronin gene fragment without any influence on the parasitological parameters. No change was observed in the PfMDR2 gene, while no artemisinin resistance-associated mutation was found in the PfCRT gene. Furthermore, a sample each in the retrospective study contained the Pfkelch13 K189T and Pfcoronin P76S mutations. Conclusion: The study revealed absence of genetic-based evidence of artemisinin resistance in the study population at the time of study. The high frequency of K189T Pfkelch13 mutation and its correlation with increased parasite clearance time in this study may depict geographical variation of resistance mediators and imminent artemisinin resistance, respectively. The study also revealed an inherent potential of parasites to harbour drug-resistant genotypes before the introduction of ACTs in Nigeria.Keywords: artemisinin resistance, plasmodium falciparum, Pfkelch13 mutations, Pfcoronin
Procedia PDF Downloads 49322 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 317321 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 185320 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters
Authors: Young-Tae Lee, Hee-Chang Lim
Abstract:
This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance
Procedia PDF Downloads 373319 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 251318 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 281317 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design
Authors: Ling Liyun
Abstract:
In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 136316 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator
Procedia PDF Downloads 224315 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory
Procedia PDF Downloads 117314 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis
Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins
Abstract:
Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.Keywords: prostate cancer, stem cell, genomic mutation, RNAseq
Procedia PDF Downloads 18313 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 71312 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 157311 Computer-Aided Ship Design Approach for Non-Uniform Rational Basis Spline Based Ship Hull Surface Geometry
Authors: Anu S. Nair, V. Anantha Subramanian
Abstract:
This paper presents a surface development and fairing technique combining the features of a modern computer-aided design tool namely the Non-Uniform Rational Basis Spline (NURBS) with an algorithm to obtain a rapidly faired hull form. Some of the older series based designs give sectional area distribution such as in the Wageningen-Lap Series. Others such as the FORMDATA give more comprehensive offset data points. Nevertheless, this basic data still requires fairing to obtain an acceptable faired hull form. This method uses the input of sectional area distribution as an example and arrives at the faired form. Characteristic section shapes define any general ship hull form in the entrance, parallel mid-body and run regions. The method defines a minimum of control points at each section and using the Golden search method or the bisection method; the section shape converges to the one with the prescribed sectional area with a minimized error in the area fit. The section shapes combine into evolving the faired surface by NURBS and typically takes 20 iterations. The advantage of the method is that it is fast, robust and evolves the faired hull form through minimal iterations. The curvature criterion check for the hull lines shows the evolution of the smooth faired surface. The method is applicable to hull form from any parent series and the evolved form can be evaluated for hydrodynamic performance as is done in more modern design practice. The method can handle complex shape such as that of the bulbous bow. Surface patches developed fit together at their common boundaries with curvature continuity and fairness check. The development is coded in MATLAB and the example illustrates the development of the method. The most important advantage is quick time, the rapid iterative fairing of the hull form.Keywords: computer-aided design, methodical series, NURBS, ship design
Procedia PDF Downloads 169310 Association between Dental Caries and Asthma among 12-15 Years Old School Children Studying in Karachi, Pakistan: A Cross Sectional Study
Authors: Wajeeha Zahid, Shafquat Rozi, Farhan Raza, Masood Kadir
Abstract:
Background: Dental caries affects the overall health and well-being of children. Findings from various international studies regarding the association of dental caries with asthma are inconsistent. With the increasing burden of caries and childhood asthma, it becomes imperative for an underdeveloped country like Pakistan where resources are limited to identify whether there is a relationship between the two. This study aims to identify an association between dental caries and asthma. Methods: A cross-sectional study was conducted on 544 children aged 12-15 years recruited from five private schools in Karachi. Information on asthma was collected through the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. The questionnaire addressed questions regarding child’s demographics, physician diagnoses of asthma, type of medication administered, family history of asthma and allergies, dietary habits and oral hygiene behavior. Dental caries was assessed using DMFT Index (Decayed, Missing, Filled teeth) index The data was analyzed using Cox proportional Hazard algorithm and crude and adjusted prevalence ratios with 95% CI were reported. Results: This study comprises of 306 (56.3%) boys and 238 (43.8%) girls. The mean age of children was 13.2 ± (0.05) years. The total number of children with carious teeth (DMFT > 0) were 166/544 (30.5%), and the decayed component contributed largely (22.8%) to the DMFT score. The prevalence of physician’s diagnosed asthma was 13%. This study identified almost 7% asthmatic children using the internationally validated International Study of Asthma and Allergies in Childhood (ISAAC) tool and 8 children with childhood asthma were identified by parent interviews. Overall prevalence of asthma was 109/544 (20%). The prevalence of caries in asthmatic children was 28.4% as compared to 31% among non-asthmatic children. The adjusted prevalence ratio of dental caries in asthmatic children was 0.8 (95% CI 0.59-1.29). After adjusting for carious food intake, age, oral hygiene index and dentist visit, the association between asthma and dental caries turned out to be non-significant. Conclusion: There was no association between asthma and dental caries among children who participated in this study.Keywords: asthma, caries, children, school-based
Procedia PDF Downloads 246309 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 63308 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 157307 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles
Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan
Abstract:
In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.Keywords: automobile suspension, MATLAB, control system, PID, PSO
Procedia PDF Downloads 294306 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment
Procedia PDF Downloads 200305 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 89304 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 155303 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 146302 The Optimal Irrigation in the Mitidja Plain
Authors: Gherbi Khadidja
Abstract:
In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.Keywords: optimal irrigation, soil moisture, smart irrigation, water management
Procedia PDF Downloads 109301 Use of Zikani’s Ribosome Modulating Agents for Treating Recessive Dystrophic & Junctional Epidermolysis Bullosa with Nonsense Mutations
Authors: Mei Chen, Yingping Hou, Michelle Hao, Soheil Aghamohammadzadeh, Esteban Terzo, Roger Clark, Vijay Modur
Abstract:
Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genetic skin condition characterized by skin tearing and unremitting blistering upon minimal trauma. Repeated blistering, fibrosis, and scarring lead to aggressive squamous cell carcinoma later in life. RDEB is caused by mutations in the COL7A1 gene encoding collagen type VII (C7), the major component of anchoring fibrils mediating epidermis-dermis adherence. Nonsense mutations in the COL7A1 gene of a subset of RDEB patients leads to premature termination codons (PTC). Similarly, most Junctional Epidermolysis Bullosa (JEB) cases are caused by nonsense mutations in the LAMB3 gene encoding the β3 subunit of laminin 332. Currently, there is an unmet need for the treatment of RDEB and JEB. Zikani Therapeutics has discovered an array of macrocyclic compounds with ring structures similar to macrolide antibiotics that can facilitate readthrough activity of nonsense mutations in the COL7A1 and LAMB3 genes by acting as Ribosome Modulating Agents (RMAs). The medicinal chemistry synthetic advancements of these macrocyclic compounds have allowed targeting the human ribosome while preserving the structural elements responsible for the safety and pharmacokinetic profile of clinically used macrolide antibiotics. Methods: C7 expression was used as a measure of readthrough activity by immunoblot assays in two primary human fibroblasts from RDEB patients (R578X/R578X and R163X/R1683X-COL7A1). Similarly, immunoblot assays in C325X/c.629-12T > A-LAMB3 keratinocytes were used to measure readthrough activity for JEB. The relative readthrough activity of each compound was measured relative to Gentamicin. An imaging-based fibroblast migration assay was used as an assessment of C7 functionality in RDEB-fibroblasts over 16-20 hrs. The incubation period for the above experiments was 48 hrs for RDEB fibroblasts and 72 hours for JEB keratinocytes. Results: 9 RMAs demonstrated increased protein expression in both patient RDEB fibroblasts. The highest readthrough activity at tested concentrations without cytotoxicities increased protein expression up to 179% of Gentamicin (400 µg/ml), with favored readthrough activity in R163X/R1683X-COL7A1 fibroblasts. Concurrent with protein expression, fibroblast hypermotility phenotype observed in RDEB was rescued by reducing motility by ~35% to WT levels (the same level as 690 µM Gentamicin treated cells). Laminin β3 expression was also shown to be increased by 6 RMAs in keratinocytes to 33-83% of (400 µg/ml) Gentamicin. Conclusions: To date, 9 RMAs have been identified that enhance the expression of functional C7 in a mutation-dependent manner in two different RDEB patient fibroblast backgrounds (R578X/R578X and R163X/R1683X-COL7A1). A further 6 RMAs have been identified that enhance the readthrough of C325X-LAMB3 in JEB patient keratinocytes. Based on the clinical trial conducted by us with topical gentamycin in 2017, Zikani’s RMAs achieve clinically significant levels of read-through for the treatment of recessive dystrophic and Junctional Epidermolysis Bullosa.Keywords: epidermolysis bullosa, nonsense mutation, readthrough, ribosome modulation
Procedia PDF Downloads 98300 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 583299 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 168298 Blood Thicker Than Water: A Case Report on Familial Ovarian Cancer
Authors: Joanna Marie A. Paulino-Morente, Vaneza Valentina L. Penolio, Grace Sabado
Abstract:
Ovarian cancer is extremely hard to diagnose in its early stages, and those afflicted at the time of diagnosis are typically asymptomatic and in the late stages of the disease, with metastasis to other organs. Ovarian cancers often occur sporadically, with only 5% associated with hereditary mutations. Mutations in the BRCA1 and BRCA2 tumor suppressor genes have been found to be responsible for the majority of hereditary ovarian cancers. One type of ovarian tumor is Malignant Mixed Mullerian Tumor (MMMT), which is a very rare and aggressive type, accounting for only 1% of all ovarian cancers. Reported is a case of a 43-year-old G3P3 (3003), who came into our institution due to a 2-month history of difficulty of breathing. Family history reveals that her eldest and younger sisters both died of ovarian malignancy, with her younger sister having a histopathology report of endometrioid ovarian carcinoma, left ovary stage IIIb. She still has 2 asymptomatic sisters. Physical examination pointed to pleural effusion of right lung, and presence of bilateral ovarian new growth, which had a Sassone score of 13. Admitting Diagnosis was G3P3 (3003), Ovarian New Growth, bilateral, Malignant; Pleural effusion secondary to malignancy. BRCA was requested to establish a hereditary mutation; however, the patient had no funds. Once the patient was stabilized, TAHBSO with surgical staging was performed. Intraoperatively, the pelvic cavity was occupied by firm, irregularly shaped ovaries, with a colorectal metastasis. Microscopic sections from both ovaries and the colorectal metastasis had pleomorphic tumor cells lined by cuboidal to columnar epithelium exhibiting glandular complexity, displaying nuclear atypia and increased nuclear-cytoplasmic ratio, which are infiltrating the stroma, consistent with the features of Malignant Mixed Mullerian Tumor, since MMMT is composed histologically of malignant epithelial and sarcomatous elements. In conclusion, discussed is the clinic-pathological feature of a patient with primary ovarian Malignant Mixed Mullerian Tumor, a rare malignancy comprising only 1% of all ovarian neoplasms. Also, by understanding the hereditary ovarian cancer syndromes and its relation to this patient, it cannot be overemphasized that a comprehensive family history is really fundamental for early diagnosis. The familial association of the disease, given that the patient has two sisters who were diagnosed with an advanced stage of ovarian cancer and succumbed to the disease at a much earlier age than what is reported in the general population, points to a possible hereditary syndrome which occurs in only 5% of ovarian neoplasms. In a low-resource setting, being in a third world country, the following will be recommended for monitoring and/or screening women who are at high risk for developing ovarian cancer, such as the remaining sisters of the patient: 1) Physical examination focusing on the breast, abdomen, and rectal area every 6 months. 2) Transvaginal sonography every 6 months. 3) Mammography annually. 4) CA125 for postmenopausal women. 5) Genetic testing for BRCA1 and BRCA2 will be reserved for those who are financially capable.Keywords: BRCA, hereditary breast-ovarian cancer syndrome, malignant mixed mullerian tumor, ovarian cancer
Procedia PDF Downloads 289297 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants
Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li
Abstract:
The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care
Procedia PDF Downloads 152