Search results for: practice learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10730

Search results for: practice learning

6350 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
6349 Prevalence of Over-Schooling Preschoolers as Perceived by Teachers in Kwara Central, Nigeria

Authors: Rachael Ojima Agarry, Raheemat Opeyemi Omosidi

Abstract:

Over-schooling children is an abuse of the fundamental provisions of the National Policy on Education in Nigeria. The practice overburdens or places unwarranted academic demands on children, particularly preschoolers. This study was carried out to ascertain the prevalence of over-schooling preschoolers as perceived by teachers in the Kwara Central Senatorial District. One research question and two null hypotheses were formulated to guide the study. A descriptive survey design was employed. The population of the study consists of all preschool teachers in both private and public schools in Kwara Central. A validated instrument tagged “Questionnaire on Prevalence of Over-schooling of Preschoolers (QPOP)” with a reliability index of 0.76 was used for data collection. The questionnaire consists of sections A and B. Section A solicited the respondents’ demographic information, and Section B sought the prevalence of over-schooling as perceived by teachers. Data collected were analyzed using descriptive statistics of frequency and percentage. Mean and standard deviation were used to analyze the demographic information and the research question. The two research hypotheses were analyzed using a t-test and Analysis of Variance (ANCOVA) at a 0.05 level of significance. The results revealed that there is a high level of prevalence of over-schooling of preschoolers in Kwara Central. Also, there is a significant difference in teachers' perception of the prevalence of over-schooling preschoolers based on school type and school location. It was concluded that both private and public schools in Kwara Central practice over-schooling of preschoolers at a high level. Hence, it was recommended that the government, through the State and/or Federal Ministry of Education, should enact and enforce a law that would ensure children in this category spend only the stipulated time in school as well as strict adherence to the recommended curriculum contents by proprietors and teachers.

Keywords: over-schooling, preschoolers, school type, school location

Procedia PDF Downloads 56
6348 The Mentoring in Professional Development of University Teachers

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

Mentoring is provided by professionals with a higher level of experience and competence as part of the professional development of a university faculty. This paper explores the characteristics of the mentoring provided by those teachers participating in the development of an active methodology program run at the University of the Basque Country: to examine and to analyze mentors’ performance with the aim of providing empirical evidence regarding its value as a lifelong learning strategy for teaching staff. A total of 183 teachers were trained during the first three programs. The analysis method uses a coding technique and is based on flexible, systematic guidelines for gathering and analyzing qualitative data. The results have confirmed the conception of mentoring as a methodological innovation in higher education. In short, university teachers in general assessed the mentoring they received positively, considering it to be a valid, useful strategy in their professional development. They highlighted the methodological expertise of their mentor and underscored how they monitored the learning process of the active method and provided guidance and advice when necessary. Finally, they also drew attention to traits such as availability, personal commitment and flexibility in. However, a minority critique is pointed to some aspects of the performance of some mentors.

Keywords: higher education, mentoring, professional development, university teachers

Procedia PDF Downloads 241
6347 Empowering Girls and Youth in Bangladesh: Importance of Creating Safe Digital Space for Online Learning and Education

Authors: Md. Rasel Mia, Ashik Billah

Abstract:

The empowerment of girls and youth in Bangladesh is a demanding issue in today's digital age, where online learning and education have become integral to personal and societal development. This abstract explores the critical importance of creating a secure online environment for girls and youth in Bangladesh, emphasizing the transformative impact it can have on their access to education and knowledge. Bangladesh, like many developing nations, faces gender inequalities in education and access to digital resources. The creation of a safe digital space not only mitigates the gender digital divide but also fosters an environment where girls and youth can thrive academically and professionally. This manuscript draws attention to the efforts through a mixed-method study to assess the current digital landscape in Bangladesh, revealing disparities in phone and internet access, online practices, and awareness of cyber security among diverse demographic groups. Moreover, the study unveils the varying levels of familial support and barriers encountered by girls and youth in their quest for digital literacy. It emphasizes the need for tailored training programs that address specific learning needs while also advocating for enhanced internet accessibility, safe online practices, and inclusive online platforms. The manuscript culminates in a call for collaborative efforts among stakeholders, including NGOs, government agencies, and telecommunications companies, to implement targeted interventions that bridge the gender digital divide and pave the way for a brighter, more equitable future for girls and youth in Bangladesh. In conclusion, this research highlights the undeniable significance of creating a safe digital space as a catalyst for the empowerment of girls and youth in Bangladesh, ensuring that they not only access but excel in the online space, thereby contributing to their personal growth and the advancement of society as a whole.

Keywords: collaboration, cyber security, digital literacy, digital resources, inclusiveness

Procedia PDF Downloads 61
6346 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process

Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand

Abstract:

This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.

Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping

Procedia PDF Downloads 52
6345 An Audit on the Quality of Pre-Operative Intra-Oral Digital Radiographs Taken for Dental Extractions in a General Practice Setting

Authors: Gabrielle O'Donoghue

Abstract:

Background: Pre-operative radiographs facilitate assessment and treatment planning in minor oral surgery. Quality assurance for dental radiography advocates the As Low As Reasonably Achievable (ALARA) principle in collecting accurate diagnostic information. Aims: To audit the quality of digital intraoral periapicals (IOPAs) taken prior to dental extractions in a metropolitan general dental practice setting. Standards: The National Radiological Protection Board (NRPB) guidance outlines three grades of radiograph quality: excellent (Grade 1 > 70% of total exposures), diagnostically acceptable (Grade 2 <20%), and unacceptable (Grade 3 <10%). Methodology: A study of pre-operative radiographs taken prior to dental extractions across 12 private general dental practices in a large metropolitan area by 44 practitioners. A total of 725 extractions were assessed, allowing 258 IOPAs to be reviewed in one audit cycle. Results: First cycle: Of 258 IOPAs: 223(86.4%) scored Grade 1, 27(10.5%) Grade 2, and 8(3.1%) Grade 3. The standard was met. 35 dental extractions were performed without an available pre-operative radiograph. Action Plan & Recommendations: Results were distributed to all staff and a continuous professional development evening organized to outline recommendations to improve image quality. A second audit cycle is proposed at a six-month interval to review the recommendations and appraise results. Conclusion: The overall standard of radiographs met the published guidelines. A significant improvement in the number of procedures undertaken without pre-operative imaging is expected at a six-month interval period. An investigation into undiagnostic imaging and associated adverse patient outcomes is being considered. Maintenance of the standards achieved is predicted in the second audit cycle to ensure consistent high quality imaging.

Keywords: audit, oral radiology, oral surgery, periapical radiographs, quality assurance

Procedia PDF Downloads 166
6344 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
6343 Evaluation of the Level of Knowledge about Probiotics amongst Community Pharmacy Staff in Jordan

Authors: Feras Darwish Elhajji, Alberto Berardi, Manal Ayyash, Iman Basheti

Abstract:

The concept of the use of probiotics for humans now has been known for decades however, their intake by the Jordanian population seems to be less common when compared to population in the developed countries. Community pharmacy is the main supplier of probiotics, however, after conducting an extensive literature review, not any published research article could be found talking about the role, knowledge, and practice of the pharmacists in the area of probiotics. The main aim of this study was to evaluate the level of knowledge about probiotics and their dispensing practice in community pharmacies in Jordan. Community pharmacy staff (pharmacists and technicians) in Amman and north of Jordan were randomly selected to complete an anonymous questionnaire that had been pre-tested and validated. Ethical approval was obtained from the university ethics committee. The questionnaire included the following sections: demographics, knowledge and perceptions about probiotics, and role of the pharmacist Pharmacists and technicians were visited and interviewed in 281 community pharmacies. Asking about probiotics, 90.4% of them said that they know what probiotics are, although only 29.5% agreed that pharmacy staff in Jordan have good knowledge about probiotics, and 88.3% agreed that pharmacy staff in Jordan need more training and knowledge about probiotics. Variables that were significantly related to knowledge about probiotics were being a pharmacist (ρ= 0.012), area of the community pharmacy (ρ= 0.019), and female staff (ρ= 0.031) after conducting logistic regression statistical analysis. More than two-thirds of the participants thought that probiotics are classified as dietary supplements by Jordan Food and Drug Administration (JFDA). Of those who knew probiotics, the majority of them – 76.8% and 91.7% – agreed that probiotics are effective and safe, respectively. Believing in efficacy of the probiotics was significantly associated with answering their use to be with or after antibiotic administration and to increase normal flora gut population (ρ= 0.007). Efficacy was also significantly associated with recommending probiotics to consumers by the pharmacist (ρ< 0.001) and by the doctor (ρ= 0.041). At the same time, the concept of safety was mainly associated with their use for flatulence and gases (ρ= 0.048). Level of knowledge about probiotics and their uses, efficacy and safety amongst community pharmacy staff in Jordan is found to be good. However, this level can be raised in the future, especially knowledge about uses of probiotics.

Keywords: community pharmacy, Jordan, prebiotics, probiotics

Procedia PDF Downloads 366
6342 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students

Authors: Liang Wang, Wei Zhang

Abstract:

Nowadays, sustainable development has increasingly become an important research topic of engineering education. Existing research on Engineering Education for Sustainable Development (EESD) has highlighted the importance of perceptions for ethical responsibility to address sustainable development in practice. However, whether and how the professional engineering experience affects those perceptions has not been proved, especially in a Chinese context. Our study fills this gap by investigating the perceptions bias of EESD between experienced engineers and engineering students. We specifically examined what EESD means for experienced engineers and engineering students using a triple-dimensional model to understand if there are obvious differences between the two groups. Our goal is to make the benefits of these experiences more accessible in school context. The data (n=438) came from a questionnaire created and adapted from previously published studies containing 288 students from mechanical or civil engineering and 150 civil engineers with rich working experience, and the questionnaire was distributed during Fall 2020. T-test was used to find the difference in different dimensions between the two groups. The statistical results show that there is a significant difference in the perceptions of EESD between experienced engineers and inexperienced engineering students in China. Experienced engineers tend to consider sustainable development from ecological, economic, and social perspectives, while engineering students' answers focus more on ecology and ignore economic and social dimensions to some extend. The findings provide empirical evidence that professional experience is helpful to cultivate the cognition and ability of sustainable development in engineering education. The results of this work indicate that more practical content should be added to engineering education to promote sustainable development. In addition, for the design of engineering courses and professional practice systems for sustainable development, we should not only pay attention to the ecological aspects but also emphasize the coordination of ecological, economic, and socially sustainable development (e.g., engineer's ethical responsibility).

Keywords: engineering education, sustainable development, experienced engineers, engineering students

Procedia PDF Downloads 102
6341 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna

Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo

Abstract:

The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.

Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system

Procedia PDF Downloads 36
6340 The Importance of Artificial Intelligence in Various Healthcare Applications

Authors: Joshna Rani S., Ahmadi Banu

Abstract:

Artificial Intelligence (AI) has a significant task to carry out in the medical care contributions of things to come. As AI, it is the essential capacity behind the advancement of accuracy medication, generally consented to be a painfully required development in care. Albeit early endeavors at giving analysis and treatment proposals have demonstrated testing, we anticipate that AI will at last dominate that area too. Given the quick propels in AI for imaging examination, it appears to be likely that most radiology, what's more, pathology pictures will be inspected eventually by a machine. Discourse and text acknowledgment are now utilized for assignments like patient correspondence and catch of clinical notes, and their utilization will increment. The best test to AI in these medical services areas isn't regardless of whether the innovations will be sufficiently skilled to be valuable, but instead guaranteeing their appropriation in day by day clinical practice. For far reaching selection to happen, AI frameworks should be affirmed by controllers, coordinated with EHR frameworks, normalized to an adequate degree that comparative items work likewise, instructed to clinicians, paid for by open or private payer associations, and refreshed over the long haul in the field. These difficulties will, at last, be survived, yet they will take any longer to do as such than it will take for the actual innovations to develop. Therefore, we hope to see restricted utilization of AI in clinical practice inside 5 years and more broad use inside 10 years. It likewise appears to be progressively evident that AI frameworks won't supplant human clinicians for a huge scope, yet rather will increase their endeavors to really focus on patients. Over the long haul, human clinicians may advance toward errands and work plans that draw on remarkably human abilities like sympathy, influence, and higher perspective mix. Maybe the lone medical services suppliers who will chance their professions over the long run might be the individuals who will not work close by AI

Keywords: artificial intellogence, health care, breast cancer, AI applications

Procedia PDF Downloads 181
6339 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 108
6338 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
6337 Mindfulness and the Purpose of Being in the Present

Authors: Indujeeva Keerthila Peiris

Abstract:

The secular view of mindfulness has some connotation to the original meaning of mindfulness mentioned in the Theravada Buddhist texts (Pāli Canon), but there is a substantial difference in the meaning of the two. Secular Mindfulness Based Interventions (MBI) focus on stilling the mind, which may provide short-term benefits and help individuals to deal with physical pain, grief, and distress. However, as with many popular educational innovations, the foundational values of mindfulness strategies have been distorted and subverted in a number of instances in which ‘McMindfulness’ programmes have been implemented with a view to reducing mindfulness mediation as a self-help technique that is easily misappropriated for the exclusive pursuit of corporate objectives, employee pacification, and commercial profit. The intention of this paper is not to critique the misappropriations of mindfulness. Instead, to go back to the root source and bring insights from the Buddhist Pāli Canon and its associated teachings on mindfulness in its own terms. In the Buddha’s discourses, as preserved in the Pāli Canon, there is nothing more significant than the understanding and practice of ‘Satipatthãna’. The Satipatthāna Sutta , the ‘Discourse on the Establishment of Mindfulness,’ opens with a proclamation highlighting both the purpose of this training and its methodology. The right practice of mindfulness is the gateway to understanding the Buddha’s teaching. However, although this concept is widely discussed among the Dhamma practitioners, it is the least understood one of them all. The purpose of this paper is to understand deeper meaning of mindfulness as it was originally intended by the Teacher. The natural state of mind is that it wanders. It wanders into the past, the present, and the future. One’s ability to hold attention to a mind object (emotion, thought, feeling, sensation, sense impression) called ‘concentration’. The intentional concentration process does not lead to wisdom. However, the development of wisdom starts when the mind is calm, concentrated, and unified. The practice of insight contemplation aims at gaining a direct understanding of the real nature of phenomena. According to the Buddha’s teaching, there are three basic facts of all existence: 1) impermanence (anicca in Pāli) ; 2) fabrication (also commonly known as suffering, unsatisfactoriness, sankhara or dukka in Pāli); 3) not-self (insubstantiality or impersonality, annatta in Pāli ). The entire Buddhist doctrine is based on these three facts. The problem is our ignorance covers reality. It is not that a person sees the emptiness of them or that we try to see the emptiness of our experience by conceptually thinking that they are empty. It is an experiential outcome that happens when the cause-and- effect overrides the self-view (sakkaya dhitti), and ignorance is known as ignorance and eradicated once and for all. Therefore, the right view (samma dhitti) is the starting point of the path, not ethical conduct (sila) or samadhi (jhana). In order to develop the right view, we need to first listen to the correct Dhamma and possess Yoniso manasikara (right comprehension) to know the five aggregates as five aggregates.

Keywords: mindfulness, spirituality, buddhism, pali canon

Procedia PDF Downloads 76
6336 A Study of Native Speaker Teachers’ Competency and Achievement of Thai Students

Authors: Pimpisa Rattanadilok Na Phuket

Abstract:

This research study aims to examine: 1) teaching competency of the native English-speaking teacher (NEST) 2) the English language learning achievement of Thai students, and 3) students’ perceptions toward their NEST. The population considered in this research was a group of 39 undergraduate students of the academic year 2013. The tools consisted of a questionnaire employed to measure the level of competency of NEST, pre-test and post-test used to examine the students’ achievement on English pronunciation, and an interview used to discover how participants perceived their NEST. The data was statistically analysed as percentage, mean, standard deviation and One-sample-t-test. In addition, the data collected by interviews was qualitatively analyzed. The research study found that the level of teaching competency of native speaker teachers of English was mostly low, the English pronunciation achievement of students had increased significantly at the level of 0.5, and the students’ perception toward NEST is combined. The students perceived their NEST as an English expertise, but they felt that NEST had not recognized students' linguistic difficulty and cultural differences.

Keywords: competency, native English-speaking teacher (NET), English teaching, learning achievement

Procedia PDF Downloads 374
6335 Studies on the Teaching Pedagogy and Effectiveness for the Multi-Channel Storytelling for Social Media, Cinema, Game, and Streaming Platform: Case Studies of Squid Game

Authors: Chan Ka Lok Sobel

Abstract:

The rapid evolution of digital media platforms has given rise to new forms of narrative engagement, particularly through multi-channel storytelling. This research focuses on exploring the teaching pedagogy and effectiveness of multi-channel storytelling for social media, cinema, games, and streaming platforms. The study employs case studies of the popular series "Squid Game" to investigate the diverse pedagogical approaches and strategies used in teaching multi-channel storytelling. Through qualitative research methods, including interviews, surveys, and content analysis, the research assesses the effectiveness of these approaches in terms of student engagement, knowledge acquisition, critical thinking skills, and the development of digital literacy. The findings contribute to understanding best practices for incorporating multi-channel storytelling into educational contexts and enhancing learning outcomes in the digital media landscape.

Keywords: digital literacy, game-based learning, artificial intelligence, animation production, educational technology

Procedia PDF Downloads 114
6334 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal

Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni

Abstract:

This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.

Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal

Procedia PDF Downloads 503
6333 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 112
6332 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 228
6331 Gender Difference in the Use of Request Strategies by Urdu/Punjabi Native Speakers

Authors: Muzaffar Hussain

Abstract:

Requests strategies are considered as a part of the speech acts, which are frequently used in everyday communication. Each language provides speech acts to the speakers; therefore, the selection of appropriate form seems more culture-specific rather than language. The present paper investigates the gender-based difference in the use of request strategies by native speakers of Urdu/Punjabi male and female who are learning English as a second language. The data for the present study were collected from 68 graduate students, who are learning English as an L2 in Pakistan. They were given an online close-ended questionnaire, based on Discourse Completion Test (DCT). After analyzing the data, it was found that the L1 male Urdu/Punjabi speakers were inclined to use more direct request strategies while the female Urdu/Punjabi speakers used indirect request strategies. This paper also found that in some situations female participants used more direct strategies than male participants. The present study concludes that the use of request strategies is influenced by culture, social status, and power distribution in a society.

Keywords: gender variation, request strategies, face-threatening, second language pragmatics, language competence

Procedia PDF Downloads 189
6330 Behavioural Intention to Use Learning Management System (LMS) among Postgraduate Students: An Application of Utaut Model

Authors: Kamaludeen Samaila, Khashyaullah Abdulfattah, Fahimi Ahmad Bin Amir

Abstract:

The study was conducted to examine the relationship between selected factors (performance expectancy, effort expectancy, social influence and facilitating condition) and students’ intention to use the learning management system (LMS), as well as investigating the factors predicting students’ intention to use the LMS. The study was specifically conducted at the Faculty of Educational Study of University Putra Malaysia. Questionnaires were distributed to 277 respondents using a random sampling technique. SPSS Version 22 was employed in analyzing the data; the findings of this study indicated that performance expectancy (r = .69, p < .01), effort expectancy (r=.60, p < .01), social influence (r = .61, p < .01), and facilitating condition (r=.42, p < .01), were significantly related to students’ intention to use the LMS. In addition, the result also revealed that performance expectancy (β = .436, p < .05), social influence (β=.232, p < .05), and effort expectancy (β = .193, p < .05) were strong predictors of students’ intention to use the LMS. The analysis further indicated that (R2) is 0.054 which means that 54% of variation in the dependent variable is explained by the entire predictor variables entered into the regression model. Understanding the factors that affect students’ intention to use the LMS could help the lecturers, LMS managers and university management to develop the policies that may attract students to use the LMS.

Keywords: LMS, postgraduate students, PutraBlas, students’ intention, UPM, UTAUT model

Procedia PDF Downloads 510
6329 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 93
6328 The Subcategories of Folklore Dance for Children as Didactic Games for Developing Musical Ability in the Preschool Period

Authors: Eudjen Cinc, Mircea Maran, Jasmina Stolic

Abstract:

Viewed through the prism of folkloristics – ethnomusicology, the majority of didactic musical games belong to the category of folklore creative work of children, such games can be extremely useful for the development of musical ability in the preschool age. The paper gives a number of examples from the Romanian children folklore which were used in practice.

Keywords: musical games, children folklore, rhythmical system, melodica

Procedia PDF Downloads 703
6327 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course

Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu

Abstract:

Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.

Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects

Procedia PDF Downloads 262
6326 The Current Use of Cell Phone in Education

Authors: Elham A. Alsadoon, Hamadah B. Alsadoon

Abstract:

Educators try to design learning environments that are preferred by their students. With the wide-spread adoption of cell phones surpassing any other technology, educators should not fail to invest in the power of such technology. This study aimed to explore the current use of cell phones in education among Saudi students in Saudi universities and how students perceive such use. Data was collected from 237 students at King Saud University. Descriptive analysis was used to analyze the data. A T-test for independent groups was used to examine whether there was a significant difference between males and females in their perception of using cell phones in education. Findings suggested that students have a positive attitude toward the use of cell phones in education. The most accepted use was for sending notification to students, which has already been experienced through the Twasel system provided by King Saud University. This electronic system allows instructors to easily send any SMS or email to their students. The use of cell phone applications came in the second rank of using cell phones in education. Students have already experienced the benefits of having these applications handy wherever they go. On the other hand, they did not perceive using cell phones for assessment as practical educational usage. No gender difference was detected in terms of students’ perceptions toward using cell phones in education.

Keywords: cell phone, mobile learning, educational sciences, education

Procedia PDF Downloads 413
6325 A Qualitative Study of Approaches Used by Physiotherapists to Educate Patients with Chronic Low Back Pain

Authors: Styliani Soulioti, Helen Fiddler

Abstract:

The aim of this study was to investigate the approaches used by physiotherapists in the education of patients with chronic low back pain (cLBP) and the rationale that underpins their choice of approach. Therapeutic patient education (TPE) is considered to be an important aspect of modern physiotherapy practice, as it helps patients achieve better self-management and a better understanding of their problem. Previous studies have explored this subject, but the reasoning behind the choices physiotherapists make as educators has not been widely explored, thus making it difficult to understand areas that could be addressed in order to improve the application of TPE.A qualitative study design, guided by a constructivist epistemology was used in this research project. Semi-structured interviews were used to collect data from 7 physiotherapists. Inductive coding and thematic analysis were used, which allowed key themes to emerge. Data analysis revealed two overarching themes: 1) patient-centred versus therapist-centred educational approaches, and 2) behaviourist versus constructivist educational approaches. Physiotherapists appear to use a patient-centred-approach when they explore patients’ beliefs about cLBP and treatment expectations. However, treatment planning and goal-setting were guided by a therapist-centred approach, as physiotherapists appear to take on the role of the instructor/expert, whereas patients were viewed as students. Using a constructivist approach, physiotherapists aimed to provide guidance to patients by combining their professional knowledge with the patients’ individual knowledge, to help the patient better understand their problem, reflect upon it and find a possible solution. However, educating patients about scientific facts concerning cLBP followed a behaviourist approach, as an instructor/student relationship was observed and the learning content was predetermined and transmitted in a one-way manner. The results of this study suggest that a lack of consistency appears to exist in the educational approaches used by physiotherapists. Although patient-centeredness and constructivism appear to be the aims set by physiotherapists in order to optimise the education they provide, a student-teacher relationship appears to dominate when it comes to goal-setting and delivering scientific information.

Keywords: chronic low back pain, educational approaches, health education, patient education

Procedia PDF Downloads 206
6324 Source of Professionalism and Knowledge among Sport Industry Professionals in India with Limited Sport Management Higher Education

Authors: Sandhya Manjunath

Abstract:

The World Association for Sport Management (WASM) was established in 2012, and its mission is "to facilitate sport management research, teaching, and learning excellence and professional practice worldwide". As the field of sport management evolves, it have seen increasing globalization of not only the sport product but many educators have also internationalized courses and curriculums. Curricula should reflect globally recognized issues and disseminate specific intercultural knowledge, skills, and practices, but regional disparities still exist. For example, while India has some of the most ardent sports fans and events in the world, sport management education programs and the development of a proper curriculum in India are still in their nascent stages, especially in comparison to the United States and Europe. Using the extant literature on professionalization and institutional theory, this study aims to investigate the source of knowledge and professionalism of sports managers in India with limited sport management education programs and to subsequently develop a conceptual framework that addresses any gaps or disparities across regions. This study will contribute to WASM's (2022) mission statement of research practice worldwide, specifically to fill the existing disparities between regions. Additionally, this study may emphasize the value of higher education among professionals entering the workforce in the sport industry. Most importantly, this will be a pioneer study highlighting the social issue of limited sport management higher education programs in India and improving professional research practices. Sport management became a field of study in the 1980s, and scholars have studied its professionalization since this time. Dowling, Edwards, & Washington (2013) suggest that professionalization can be categorized into three broad categories of organizational, systemic, and occupational professionalization. However, scant research has integrated the concept of professionalization with institutional theory. A comprehensive review of the literature reveals that sports industry research is progressing in every country worldwide at its own pace. However, there is very little research evidence about the Indian sports industry and the country's limited higher education sport management programs. A growing need exists for sports scholars to pursue research in developing countries like India to develop theoretical frameworks and academic instruments to evaluate the current standards of qualified professionals in sport management, sport marketing, venue and facilities management, sport governance, and development-related activities. This study may postulate a model highlighting the value of higher education in sports management. Education stakeholders include governments, sports organizations and their representatives, educational institutions, and accrediting bodies. As these stakeholders work collaboratively in developed countries like the United States and Europe and developing countries like India, they simultaneously influence the professionalization (i.e., organizational, systemic, and occupational) of sport management education globally. The results of this quantitative study will investigate the current standards of education in India and the source of knowledge among industry professionals. Sports industry professionals will be randomly selected to complete the COSM survey on PsychData and rate their perceived knowledge and professionalism on a Likert scale. Additionally, they will answer questions involving their competencies, experience, or challenges in contributing to Indian sports management research. Multivariate regression will be used to measure the degree to which the various independent variables impact the current knowledge, contribution to research, and professionalism of India's sports industry professionals. This quantitative study will contribute to the limited academic literature available to Indian sports practitioners. Additionally, it shall synthesize knowledge from previous work on professionalism and institutional knowledge, providing a springboard for new research that will fill the existing knowledge gaps. While a further empirical investigation is warranted, our conceptualization contributes to and highlights India's burgeoning sport management industry.

Keywords: sport management, professionalism, source of knowledge, higher education, India

Procedia PDF Downloads 69
6323 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 66
6322 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 113
6321 Service Users’ Opinions and Experiences of Health Care Practitioners’ Right to Conscientiously Object to Abortion: A Liberal Feminist Approach

Authors: B. Self, V. Fleming, C. Maxwell

Abstract:

The fourth clause of the UK 1967 Abortion Act allows individuals (including health care practitioners) to conscientiously object to participating in an abortion. Individuals are able to object if they consider that participating is incompatible with their religious, moral, philosophical, ethical, or personal beliefs. Currently, there is no research on service users’ opinions and understandings of conscientious objection or the impact of conscientious objection from the UK service users’ perspective. This perspective is imperative in understanding the real-world consequences and impact of conscientious objection and essential when creating policy and guidelines. This qualitative research took a liberal feminist approach. It provided a platform for service users to share their experiences of abortion and conscientious objection, as well as their opinions and understandings of conscientious objection. The method employed was semi-structured interviews. Findings indicated that conscientious objection could work in practice. However, it is currently failing some individuals, as health care practitioners are not always referring and informing service users. Participants didn’t experience burdens such as long waiting times and were still able to access legal abortion. However, participants did experience negative emotional effects, as they were often left feeling scared, angry, and hopeless when they were not referred. Moreover, participants’ opinions on conscientious objection in the UK varied greatly. The majority supported the most common approach within the literature and in practice, whereby health care practitioners are able to object so long as they refer and inform the service user. However, the opinion that health care practitioners should not be allowed to object or should be able to object without referring and informing was also present. Without this research, the impact that conscientious objection is having on service users in the UK and service users’ opinions on conscientious objection wouldn’t be known. These findings will be used to inform national policy and guidelines, making access to abortion fairer and safer for all.

Keywords: conscientious objection, abortion, medical ethics, reproductive justice

Procedia PDF Downloads 144