Search results for: granule static strength
396 Fast Transient Workflow for External Automotive Aerodynamic Simulations
Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley
Abstract:
In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS
Procedia PDF Downloads 116395 Nonlinear Evolution of the Pulses of Elastic Waves in Geological Materials
Authors: Elena B. Cherepetskaya, Alexander A. Karabutov, Natalia B. Podymova, Ivan Sas
Abstract:
Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus ‘GEOSCAN-02M’. Ultrasonic pulses are excited by the pulses of Q-switched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach-Mayergoyz and can be used for the location of cracks in the optically opaque materials.Keywords: cracks, geological materials, nonlinear evolution of ultrasonic pulses, rock
Procedia PDF Downloads 350394 Development of Biodegradable Wound Healing Patch of Curcumin
Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari
Abstract:
The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.Keywords: wound healing, biodegradable, polymers, patch
Procedia PDF Downloads 481393 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food
Authors: Aiman Zehra, Sajad Mohd Wani
Abstract:
Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers
Procedia PDF Downloads 95392 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays
Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng
Abstract:
Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers
Procedia PDF Downloads 243391 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting
Authors: Yuen Man Yan
Abstract:
Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting
Procedia PDF Downloads 72390 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer
Authors: Qing Liu, Jean-fabien Capsal, Claude Richard
Abstract:
In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric
Procedia PDF Downloads 376389 The Emerging Post-Islamism and the Politics of Pakistan’s Jamaat-i-Islami in the Contemporary Muslim World
Authors: Shahzada Gulfam
Abstract:
Islamism was considered as a new phenomenon in Muslim World to revolt against static Religious Traditionalists and the Imperialists. Islamist political parties viewed the establishment of an Islamic state within the limits of Sharia’h as their destination. The Islamists movements like Ikhwan-ul Muslimun, Jamaat-i-Islami etc. did appear with revolutionary agenda but were contained by military forces and the secular modernists of Muslim World. The Muslim rulers, historically could not respect the democratic and moral norms and equally emerged as dictators in democracies, military rule as well as in monarchies. The Arab Spring did not follow the Islamists agenda but gathered the common masses against the corrupt rulers to have a just democratic political system. The Islamic State and Sharia’h were not their immediate targets but the achievement of moral norms in Muslim societies and eradication of dictatorial rule were the basic aims. This phenomenon is named as post-Islamism. The political struggle of PAT (Pakistan Awami Tehreek) and the PTI (Pakistan Tehreek-i-Insaf) has been following the footsteps of Arab Spring and can be noted as the extension of Arab Spring in Muslim World. The results of this struggle would define the fate of Post-Islamism in Pakistan. Has Jamaat-i-Islami got the potential to reform its agenda accordingly? This paper intends to study the Jamaat’s struggle and tries to predict Jamaat’s role in post-Islamism scenario. There is a clear distinction between the people of religion and the people following the popular materialistic westernized value system. This division is also evident in political parties. Pakistan has been ruled mostly by the secular parties and rulers. The inability to establish Islamic system by replacing the imperial system has created militancy and revolt which requires the establishment of a sound model Islamic based system in the country. The political parties of Pakistan could not device a modernize agenda, equally acceptable in modernized world and addressing the prevailing issues and also having the indigenous religious and cultural roots. The inability of Jamaat-i-Islami Pakistan to transform its agenda accordingly to serve the post-Islamism has made it irrelevant in Pakistan’s politics. Once Jamaat leaves behind its hard position as an Islamist party and accepts the post-Islamism as beginning to create its idealized state and society, it can pursue its agenda gradually. The phenomenon of post-Islamism does not make Islamists irrelevant but invites them to listen to the priorities of masses rather than insisting on the agenda of their respective ideologues to be followed for all times. The ruling Muslim democrats and military dictators of Pakistan have been following unfair means to sustain their political power which gave rise to space for the new political parties to emerge and organize agitation successfully in Pakistani Politics. Jamaat-i-Islami could not fill that space to be an agent of Post-Islamism and could not break their chains which had been tying them to the prevailing failed democracy of Pakistan. Post-Islamists are the addressers of the rulers corruption and are struggling for reforms in system. Jamaat due to its ideological compulsions could not transform its agenda accordingly. The new scenario indicates that the Post-Islamism which emerged in Arab World can be taken as first step to establish democracy and justice in state and society and then the establishment of Islamic law and the establishment of an Islamic state should have been the next targets. This gradual agenda would have delivered public support to the Jamaat which deserved that but PTI & PAT have cashed this opportunity in Pakistani politics by strengthening their respective vote banks.Keywords: arab spring, islamic state, islamic political parties, muslim world, post-islamism
Procedia PDF Downloads 368388 Height of Highway Embankment for Tolerable Residual Settlement of Loose Cohesionless Subsoil Overlain by Stronger Soil
Authors: Sharifullah Ahmed
Abstract:
Residual settlement of cohesionless or non-plastic soil of different strength underlying highway embankment overlain by stronger soil layer highway embankment is studied. A parametric study is carried out for different height of embankment and for different ESAL factor. The sum of elastic settlements of cohesionless subsoil due to axle induced stress and due to self-weight of pavement layers is termed as the residual settlement. The values of residual settlement (Sr) for different heights of road embankment (He) are obtained and presented as design charts for different SPT Value (N60) and ESAL factor. For rigid pavement and flexible pavement in approach to bridge or culvert, the tolerable residual settlement is 0.100m. This limit is taken as 0.200m for flexible pavement in general sections of highway without approach to bridge or culvert. A simplified guideline is developed for design of highway embankment underlain by very loose to loose cohesionless subsoil overlain by a stronger soil layer for limiting value of the residual settlement. In the current research study range of ESAL factor is 1-10 and range of SPT value (N60) is 1-10. That is found that, ground improvement is not required if the overlying stronger layer is minimum 1.5m and 4.0m for general road section of flexible pavement except bridge or culvert approach and for rigid pavement or flexible pavement in bridge or culvert approach. Tables and charts are included in the prepared guideline to obtain minimum allowable height of highway embankment to limit the residual settlement with in mentioned tolerable limit. Allowable values of the embankment height (He) are obtained corresponding to tolerable or limiting level of the residual settlement of loose subsoil for different SPT value, thickness of stronger layer (d) and ESAL factor. The developed guideline is may be issued to be used in assessment of the necessity of ground improvement in case of cohesionless subsoil underlying highway embankment overlain by stronger subsoil layer for limiting residual settlement. The ground improvement is only to be required if the residual settlement of subsoil is more than tolerable limit.Keywords: axle pressure, equivalent single axle load, ground improvement, highway embankment, tolerable residual settlement
Procedia PDF Downloads 127387 The Role of Women in Criminal Organizations
Authors: Rossella Marzullo
Abstract:
Family plays a central role in the Calabrian criminal organization, which draws its strength from blood ties and gender stereotypes that still impose a strong verticalization of intra-family relationships for the benefit of men. However, female figures are of great importance in the organizational structure of the 'Ndrangheta families, despite the fact that they appear to be formally suffocated by the culture of gender subordination still strongly present in the archaic world of criminal organizations. And this is so much true that over time, the women of the 'Ndrangheta have added to the function of ‘internal containment’, the increasingly explicit function of intermediaries in the ‘external’ activities of the clan. But what happens in the 'Ndrangheta if women break the bond and decide to speak? The results are shocking. When a woman starts talking to ask the institutions for help, the system ‘goes crazy’, because the woman is considered the means of consolidating and transmitting family codes: she educates, forges, holds the structure together. If a woman from the 'Ndrangheta decides to speak out and get out of the family bottlenecks of the clan, she does not exclusively destroy the family; she destroys the system. This happens because, while not playing the same roles as men within organizations, women carry out support activities as intermediaries for the circulation of communications, thus ensuring the operability of the gang in practice and on a daily basis. Crossing the border means breaking the bonds of belonging, thus questioning one's own identity and reconstructing it according to other points of reference. How much these disruptive choices are feared by the men of the 'Ndrangheta has been seen in the dramatic stories of Lea Garofalo and Maria Concetta Cacciola: the fear of the breaking of the family pact, of the earthquake that arises from within, has marked their fate of death, useful both to stop the judicial action and to recompose the organization's estate under the aegis of terror. With physical, psychological violence, underhanded torture, and moral blackmail, the men of the mafia family tried to heal the shock caused by the voices of women, relying on violence and yet another attempt to subordinate them. This proves that the 'Ndrangheta is really afraid of them. The female voices of the 'Ndrangheta, who have shaken a consolidated and considered intangible system, represent the anti-'ndrangheta par excellence; in their choices, there is an even stronger desire to break with the mafia world.Keywords: families, gender, ‘Ndrangheta, stereotypes
Procedia PDF Downloads 114386 Evaluation of Natural Gums: Gum Tragacanth, Xanthan Gum, Guar Gum and Gum Acacia as Potential Hemostatic Agents
Authors: Himanshu Kushwah, Nidhi Sandal, Meenakshi K. Chauhan, Gaurav Mittal
Abstract:
Excessive bleeding is the primary factor of avoidable death in both civilian trauma centers as well as the military battlefield. Hundreds of Indian troops die every year due to blood loss caused by combat-related injuries. These deaths are avoidable and can be prevented to a large extent by making available a suitable hemostatic dressing in an emergency medical kit. In this study, natural gums were evaluated as potential hemostatic agents in combination with calcium gluconate. The study compares the hemostatic activity of Gum Tragacanth (GT), Guar Gum (GG), Xanthan Gum (XG) and Gum Acacia (GA) by carrying out different in-vitro and in-vivo studies. In-vitro studies were performed using the Lee-White method and Eustrek method, which includes the visual and microscopic analysis of blood clotting. MTT assay was also performed using human lymphocytes to check the cytotoxicity of the gums. The in-vivo studies were performed in Sprague Dawley rats using tail bleeding assay to evaluate the hemostatic efficacy of the gums and compared with a commercially available hemostatic sponge, Surgispon. Erythrocyte agglutination test was also performed to check the interaction between blood cells and the natural gums. Other parameters like blood loss, adherence strength of the developed hemostatic dressing material incorporating these gums, re-bleeding, and survival of the animals were also studied. The data obtained from the MTT assay showed that Guar gum, Gum Tragacanth, and Gum Acacia were not significantly cytotoxic, but substantial cytotoxicity was observed in Xanthan gum samples at high concentrations. Also, Xanthan gum took the least time with its minimum concentration to achieve hemostasis, (approximately 50 seconds at 3mg concentration). Gum Tragacanth also showed efficient hemostasis at a concentration of 35mg at the same time, but the other two gums tested were not able to clot the blood in significantly less time. A sponge dressing made of Tragacanth gum was found to be more efficient in achieving hemostasis and showed better practical applicability among all the gums studied and also when compared to the commercially available product, Surgispon, thus making it a potentially better alternative.Keywords: cytotoxicity, hemostasis, natural gums, sponge
Procedia PDF Downloads 147385 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem
Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze
Abstract:
In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem
Procedia PDF Downloads 321384 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 103383 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties
Authors: G. Krishnamoorthy, S. Anandhakumar
Abstract:
The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold
Procedia PDF Downloads 392382 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance
Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi
Abstract:
This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building
Procedia PDF Downloads 33381 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 134380 The Liminal Performances of Female-Led (Sufi) Rituals: An Anthropological in Pakistan
Authors: Sana Iqbal
Abstract:
The female voice in Sufi poetry has been studied as a symbol of humility and devotion. Throughout the centuries, the Sufi shrines have also sheltered women and have served as a source of emotional strength in times of difficulty. Although women have been central to Sufi Islam, female-led rituals and performances (of veneration) are rarely studied as acts of empowerment and symbols of healing. This is especially true for rituals performed in informal spaces, which require going beyond the shrine practices. The rituals and meanings associated with Khizr Khwaja (or Sindhi Hindu god Jhelelal) among women in Punjab can serve as a useful case study to unpack some of these meanings. The paper aims to shed light on female-led rituals among women from Punjab associated with the folkloric traditions associated with Khizar Khwaja, Zinda Pir, Jhulelal or river god in the South Asian region to protect mariners from possible risks (since trade was primarily dependent on water channels) or for inducing timely rain date back to the 10th century in Sindh. However, these meanings and associations have evolved and the paper thus aims to establish a relationship between this figure and the women in Punjab by analysing the findings from an ethnographic study. It traces the historical meanings and significance attached to the divine figure and the wells (informal spaces) associated with him since the rituals performed by women is now infused solely with seeking fertility or to be blessed with a successful pregnancy, as opposed to him being celebrated for other reasons in older times. These associations beg the question of what women gain out of these rituals and making offerings to the mysterious figure of Khizr. Anecdotal evidence in the form of interviews conducted in Bhakar and Talwandi (Punjab) during the summer of 2015 helped to explore the stories related to this legend while also allowing us to witness some of the female-led ritual practices. It can be said that the symbols adopted in the ritual practices invoke liminality for women, which is a blend of opposites. The paper argues that this liminality/journey has been used as a vehicle to transcend all worldly structures of power and it symbolically emphasises the richness of feminine love/devotion and grants healing to female devotees.Keywords: transgression, gender, liminality, ritual
Procedia PDF Downloads 126379 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding
Authors: Ehsan Alishahi, Chuang Deng
Abstract:
Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness
Procedia PDF Downloads 550378 Construction and Demolition Waste Management in Indian Cities
Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee
Abstract:
Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency
Procedia PDF Downloads 304377 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents
Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri
Abstract:
The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC
Procedia PDF Downloads 352376 Validation of Two Field Base Dynamic Balance Tests in the Activation of Selected Hip and Knee Stabilizer Muscles
Authors: Mariam A. Abu-Alim
Abstract:
The purpose of this study was to validate muscle activation amplitudes of two field base dynamic balance tests that are used as strengthen and motor control exercises too in the activation of selected hip and knee stabilizer muscles. Methods: Eighteen college-age females students (21±2 years; 65.6± 8.7 kg; 169.7±8.1 cm) who participated at least for 30 minutes in physical activity most days of the week volunteered. The wireless BIOPAC (MP150, BIOPAC System. Inc, California, USA) surface electromyography system was used to validate the activation of the Gluteus Medius and the Adductor Magnus of hip stabilizer muscles; and the Hamstrings, Quadriceps, and the Gastrocnemius of the knee stabilizer muscles. Surface electrodes (EL 503, BIOPAC, System. Inc) connected to dual wireless EMG BioNormadix Transmitters were place on selected muscles of participants dominate side. Manual muscle testing was performed to obtain the maximal voluntary isometric contraction (MVIC) in which all collected muscle activity data during the three reaching direction: anterior, posteromedial, posterolateral of the Star Excursion Balance Test (SEBT) and the Y-balance Test (YBT) data could be normalized. All participants performed three trials for each reaching direction of the SEBT and the YBT. The domanial leg trial for each participant was selected for analysis which was also the standing leg. Results: the selected hip stabilizer muscles (Gluteus Medius, Adductor Magnus) were both greater than 100%MVIC during the performance of the SEBT and in all three directions. Whereas, selected knee stabilizer muscles had greater activation 0f 100% MVIC and were significantly more activated during the performance of the YBT test in all three reaching directions. The results showed that the posterolateral and the postmedial reaching directions for both dynamic balance tests had greater activation levels and greater than 200%MVIC for all tested muscles expect of the hamstrings. Conclusion: the results of this study showed that the SEBT and the YBT had validated high levels of muscular activity for the hip and the knee stabilizer muscles; which can be used to represent the improvement, strength, control and the decreasing in the injury levels. Since these selected hip and knee stabilizer muscles, represent 35% of all athletic injuries depending on the type of sport.Keywords: dynamic balance tests, electromyography, hip stabilizer muscles, nee stabilizer muscles
Procedia PDF Downloads 151375 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications
Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin
Abstract:
Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility
Procedia PDF Downloads 149374 Differentiated Instruction for All Learners: Strategies for Full Inclusion
Authors: Susan Dodd
Abstract:
This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.Keywords: gifted, learning disability, special needs, twice exceptional
Procedia PDF Downloads 179373 The Impact of Temperamental Traits of Candidates for Aviation School on Their Strategies for Coping with Stress during Selection Exams in Physical Education
Authors: Robert Jedrys, Zdzislaw Kobos, Justyna Skrzynska, Zbigniew Wochynski
Abstract:
Professions connected to aviation require an assessment of the suitability of health, psychological and psychomotor skills and overall physical fitness of the organism, who applies. Assessment of the physical condition is conducted by the committees consisting of aero-medical specialists in clinical medicine and aviation. In addition, psychological predispositions should be evaluated by specialized psychologists familiar with the specifics of the tasks and requirements for the various positions in aviation. Both, physical abilities and general physical fitness of candidates for aviation shall be assessed during the selection exams, which also test the ability to deal with stress what is very important in aviation. Hence, the mentioned exams in physical education not only help to judge on the ranking in candidates in terms of their efficiency and performance, but also allows to evaluate the functioning under stress measured using psychological tests. Moreover, before-test stress is a predictors of successfulness in the next stages of education and practical training in the aviation. The aim of the study was to evaluate the influence of temperamental traits on strategies used for coping with stress during selection exams in physical education, deciding on admission to aviation school. The study involved 30 candidates for fighter pilot training in aviation school . To evaluate the temperament 'The Formal Characteristics of Behavior-Temperament Inventory' (FCB-TI) by B. Zawadzki and J.Strelau was used. To determine the pattern of coping with stress 'The Coping Inventory for Stressful Situations' (CISS) to N. S. Endler and J. D. A. Parker were engaged. Study of temperament and styles of coping with stress was conducted directly before the exam selection of physical education. The results were analyzed with 'Statistica 9' program. The studies showed that:-There is a negative correlation between such a temperament feature as 'perseverance' and preferred style of coping with stress concentrated on the task (r = -0.590; p < 0.004); -There is a positive correlation between such a feature of temperament as 'emotional reactivity,' and preference to deal with a stressful situation with ‘style centered on emotions’ (r = 0.520; p <0.011); -There is a negative correlation between such a feature of temperament as ‘strength’ and ‘style of coping with stress concentrated on emotions’ (r = -0.580; p < 0.004). Studies indicate that temperament traits determine the perception of stress and preferred coping styles used during the selection, as during the exams in physical education.Keywords: aviation, physical education, stress, temperamental traits
Procedia PDF Downloads 257372 Impact of Preoperative Physiotherapy Care in Total Hip Arthroplasty in Slovakia and Austria
Authors: Peter Kutis, Vladimir Littva
Abstract:
Nowadays, it is necessary to ensure that this reduction in costs is not at the expense of the quality of health care and future medical success. In general, physiotherapy for total hip joint arthroplasty is considered to be a routine matter that deals mainly with mobility training, increased muscular strength, and basic day-to-day activities such as bed-to-chair transition, standing, and walking. Within the KEGA project no. 003KU-4-2021, we decided to investigate preoperative physiotherapy care in Slovakia and Austria in total hip arthroplasty patients to shortened overall recovery. Research Sample and Methods: The sample comprised 498 respondents –patients who were indicated to total hip arthroplasty on the territory of Slovakia and Austria. There were 130 women in Slovakia and 135 women in Austria. The numbers of men were 120 in Slovakia and 113 men in Austria. The age of respondents was between 40 and 85 years of age. As a method of our research, we chose a non-standardized questionnaire, which consisted of three parts. The first part for the initial examination of the patient contained the identification of the patient according to the assigned number and subsequently 19 questions conditioned by the physical examination and evaluation of the patients. The second part of our questionnaire was completed after the patient's hospitalization and contained 10 questions that were conditioned by the patient's examination. The last third part for the overall assessment of the patient's state of health consisted of 12 questions conditioned by the patient's examination. This part was performed at the last meeting with the patient at the end of the treatment. All data were statistically processed by SPSS 25. Results: All data were evaluated at a significance level of p = 0.05. From the comparison of patients who underwent preoperative preparation, we can clearly state that the total duration of treatment is significantly shorter. A t-test of two mean values with uneven variance was used to verify the validity of the assumption. The total duration of treatment in patients with preoperative preparation was on average 92,635 days and without preoperative preparation was on average 135,884 days (t-Stat = 44,52784, t Critical one-tail = 1,648187415, t Critical two-tail = 1,965157). Conclusion: The results obtained during the research show the importance of adequate preoperative physiotherapeutic preparation of the patient. The results of total hip joint arthroplasty studies showed a significant reduction in a hospital stay as well as shortened total treatment time.Keywords: THA, physiotherapy, recovery, preoperative physiotherapy care
Procedia PDF Downloads 178371 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil
Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva
Abstract:
There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.Keywords: container housing, civil construction, housing deficit, participatory design, sustainability
Procedia PDF Downloads 191370 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 315369 Courtesy to Things and Sense of Unity with the Things: Psychological Evaluation Based on the Teaching of Buddha
Abstract:
This study aims to clarify factors of courtesy to things and the effect of courtesy on a sense of unity with things based on the teaching of Buddha. The teaching of Buddha explains when dealing with things in a courteous manner carefully, the border between selves and the external world disappears, then both are united. This is an example in Buddhist way that explains the connections with all existences, and in the modern world, it is also a lesson that humans should not let matters go to waste and treat them politely. In order to reveal concrete ways to practice courtesy to things, we clarify the factors of courtesy (Study 1) and examine the effect of courtesy on the sense of unity with the things (Study 2). In Study 1, 100 Japanese (mean age=54.39, SD=15.04, 50% female) described freely about what is courtesy to things that they use daily. These descriptions were classified, and 25 items were made asking for the degree of courtesy to the things. Then different 678 Japanese (mean age=44.72, SD=13.14, 50% female) answered the 25 items on 7-point about tools they use daily. An exploratory factor analysis revealed two factors. The first factor (α=.97) includes 'I deal with the thing carefully' and 'I clean up the thing after use'. This factor reflects how gently people care about things. The second factor (α=.96) includes 'A sense of self-control has come to me through using the thing' and 'I have got inner strength by taking care of the thing'. The second factor reflects how people learn by dealing with things carefully. In this Study 2, 200 Japanese (mean age=49.39, SD=11.07, 50% female) answered courtesy about things they use daily and the degree of sense of unity with the things using the inclusion of other in the self scale, replacing 'Other' with 'Your thing'. The ANOVA was conducted to examine the effect of courtesy (high/low level of two factors) on the score of sense of unity. The results showed the main effect of care level. People with a high level of care have a stronger sense of unity with the thing. The tendency of an interaction effect is also found. The condition with a high level of care and a high level of learning enhances the sense of unity more than the condition of a low level of care and high level in learning. Study 1 found that courtesy is composed of care and learning. That is, courtesy is not only active care to the things but also to learn the meaning of the things and grow personally with the things. Study 2 revealed that people with a high level of care feel a stronger sense of unity and also people with both a high level of care and learn tend to do so. The findings support the idea of the teaching of Buddha. In the future, it is necessary to examine a combined effect of care and learning.Keywords: courtesy, things, sense of unity, the teaching of Buddha
Procedia PDF Downloads 150368 Durability Analysis of a Knuckle Arm Using VPG System
Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee
Abstract:
A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)
Procedia PDF Downloads 419367 Decolonial Aesthetics in Ronnie Govender’s at the Edge and Other Cato Manor Stories
Authors: Rajendra Chetty
Abstract:
Decolonial aesthetics departs and delinks from colonial ideas about ‘the arts’ and the modernist/colonial work of aesthetics. Education is trapped in the western epistemic and hermeneutical vocabulary, hence it is necessary to introduce new concepts and work the entanglement between co-existing concepts. This paper will discuss the contribution of Ronnie Govender, a South African writer, to build decolonial sensibilities and delink from the grand narrative of the colonial and apartheid literary landscape in Govender’s text, At the Edge and other Cato Manor Stories. Govender uses the world of art to make a decolonial statement. Decolonial artists have to work in the entanglement of power and engage with a border epistemology. Govender’s writings depart from an embodied consciousness of the colonial wound and moves toward healing. Border thinking and doing (artistic creativity) is precisely the decolonial methodology posited by Linda T. Smith, where theory comes in the form of storytelling. Govender’s stories engage with the wounds infringed by racism and patriarchy, two pillars of eurocentric knowing, sensing, and believing that sustain a structure of knowledge. This structure is embedded in characters, institutions, languages that regulate and mange the world of the excluded. Healing is the process of delinking, or regaining pride, dignity, and humanity, not through the psychoanalytic cure, but the popular healer. The legacies of the community of Cato Manor that was pushed out of their land are built in his stories. Decoloniality then is a concept that carries the experience of liberation struggles and recognizes the strenuous conditions of marginalized people together with their strength, wisdom, and endurance. Govender’s unique performative prose reconstructs and resurrects the lives of the people of Cato Manor, their vitality and humor, pain and humiliation: a vibrant and racially integrated community destroyed by the regime’s notorious racial laws. The paper notes that Govender’s objective with his plays and stories was to open windows to both the pain and joy of life; a mission that is not didactic but to shine a torch on both mankind’s waywardness as well as its inspiring and often moving achievements against huge odds.Keywords: Govender, decoloniality, delinking, exclusion, racism, Cato Manor
Procedia PDF Downloads 157