Search results for: branched chain amino acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5312

Search results for: branched chain amino acid

992 Bioactive Potentials of Peptides and Lipids from Green Mussel (Perna viridis), Horse Mussel (Modiolus philippinarum) and Charru Mussel (Mytella charruana)

Authors: Sharon N. Nuñal, May Flor S. Muegue, Nizzy Hope N. Cartago, Raymund B. Parcon, Sheina B. Logronio

Abstract:

The antioxidant and anti-inflammatory potentials of Perna Viridis, Modiolus philippinarum, and Mytella charruana found in the Philippines were assessed. Mussel protein samples were hydrolyzed using trypsin, maturase, alcalase and pepsin at 1% and 2% concentrations and then fractionated through membrane filtration (<10 kDa and <30 kDa). Antioxidant assays showed that pepsin hydrolysate at 2% enzyme concentration exhibited the maximum activities for both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity (155-176 µM TE/mg protein) and 2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging (67-68 µM TE/mg protein) assays while trypsin hydrolysate dominated the Ferric Reducing Antioxidant Power (FRAP) for the three mussel species. Lower molecular weight peptide fractions at <10 kDa exhibited better antioxidant activities than the higher molecular weight fractions. The anti-inflammatory activities of M. philippinarum and M. charruana showed comparable protein denaturation inhibition potentials with the highest in P. Viridis samples (98.93%). The 5-Lipoxygenase (5-LOX) inhibitory activities of mussel samples showed no significant difference with inhibition exceeding 70%. P. Viridis demonstrated the highest inhibition against Cyclooxygenase-2 (COX-2) at 56.19%, while the rest showed comparable activities. This study showed that the three mussel species are potential sources of bioactive peptides and lipids with antioxidant and anti-inflammatory properties.

Keywords: anti-inflammatory, antioxidant, bioactive properties, mussel

Procedia PDF Downloads 211
991 Polymeric Microspheres for Bone Tissue Engineering

Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff

Abstract:

Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.

Keywords: bone, microspheres, PLGA, tissue engineering

Procedia PDF Downloads 425
990 Preservation of Phenytoin and Sodium Valproate Induced Bone Loss by Raloxifene through Modulating Serum Estradiol and TGF-β3 Content in Bone of Female Mice

Authors: Divya Vohora, Md. Jamir Anwar

Abstract:

Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. Both phenytoin (PHT) and sodium valproate (SVP) inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with CVD supplementation, on PHT and SVP-induced alterations in bone in mice. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of AEDs was also investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and curative treatment with raloxifene ameliorated bony alterations and was more effective than CVD. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with their antiepileptic efficacy, and hence raloxifene could be a potential therapeutic option in the management of PHT and SVP-induced bone disease if clinically approved.

Keywords: antiepileptic drugs, osteoporosis, raloxifene, TGF-β3

Procedia PDF Downloads 345
989 Use of High Hydrostatic Pressure as an Alternative Preservation Method in Camels Milk

Authors: Fahad Aljasass, Hamza Abu-Tarboush, Salah Aleid, Siddig Hamad

Abstract:

The effects of different high hydrostatic pressure treatments on the shelf life of camel’s milk were studied. Treatments at 300 to 350 MPa for 5 minutes at 40°C reduced microbial contamination to levels that prolonged the shelf life of refrigerated (3° C) milk up to 28 days. The treatment resulted in a decrease in the proteolytic activity of the milk. The content of proteolytic enzymes in the untreated milk sample was 4.23 µM/ml. This content decreased significantly to 3.61 µM/ml when the sample was treated at 250 MPa. Treatment at 300 MPa decreased the content to 3.90 which was not significantly different from the content of the untreated sample. The content of the sample treated at 350 MPa dropped to 2.98 µM/ml which was significantly lower than the contents of all other treated and untreated samples. High pressure treatment caused a slight but statistically significant increase in the pH of camel’s milk. The pH of the untreated sample was 6.63, which increased significantly to 6.70, in the samples treated at 250 and 350 MPa, but insignificantly in the sample treated at 300 MPa. High pressure treatment resulted in some degree of milk fat oxidation. The thiobarbituric acid (TBA) value of the untreated sample was 0.86 mg malonaldehyde/kg milk. This value remained unchanged in the sample treated at 250 MPa, but then it increased significantly to 1.25 and 1.33 mg/kg in the samples treated at 300 and 350 MPa, respectively. High pressure treatment caused a small increase in the greenness (a* value) of camel’s milk. The value of a* was reduced from -1.17 for the untreated sample to -1.26, -1.21 and -1.30 for the samples treated at 250, 300 and 350 MPa, respectively. Δa* at the 250 MPa treatment was -0.09, which then decreased to -0.04 at the 300 MPa treatment to increase again to -0.13 at the 350 MPa treatment. The yellowness (b* value) of camel’s milk increased significantly as a result of high pressure treatment. The b* value of the untreated sample was 1.40, this value increased to 2.73, 2.31 and 2.18 after treatments at 250, 300 and 350 MPa, respectively. The Δb* value was +1.33 at the treatment 250 MPa, decreased to +0.91 at 300 MPa and further to +0.78 at 350 MPa. The pressure treatment caused slight effect on color, slight decrease in protease activity and a slight increase in the oxidation products of lipids.

Keywords: high hydrostatic pressure, camel’s milk, mesophilic aerobic bacteria, clotting, protease

Procedia PDF Downloads 268
988 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 67
987 Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636

Authors: M. Gómez-Ramírez, A. Rivas-Castillo, I. Rodríguez-Pozos, R. A. Avalos-Zuñiga, N. G. Rojas-Avelizapa

Abstract:

Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. Acidithiobacillus thiooxidans, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, Acidithiobacillus thiooxidans strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3±1.7, 191.2±1.6, and 4.5±0.2 mg/kg for MT1, and in 74.5±0.3, 208.3±0.5, and 20.9±0.1 for MT2. Besides, < 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7±1.3 mg/kg, besides removal of < 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings.

Keywords: A. thiooxidans, bioleaching, metals, mine tailings

Procedia PDF Downloads 294
986 Osteoprotective Effect of Lawsonia inermis

Authors: Suraj Muke, Vikas Mankumare, Sadhana Sathaye

Abstract:

Osteoporosis is the most common metabolic bone disease which affects an estimated 25 million people worldwide, leading to 1 million fractures, 40,000 annual deaths and health costs of billions of dollars. It is estimated that about 80% of total osteoporosis patients are women, amongst which majority are above the age of 45 years. Postmenopausal osteoporosis is associated with lack of intestinal calcium absorption, increasing pro-oxidant and inflammatory mediators. Lawsonia inermis is a biennial dicotyledonous herbaceous shrub is reported to possess a high flavonoid, high phenolic and Inhibitors of osteoclastogenesis like Daphneside and Daphnorin. The present study aimed to screen osteoprotective effect of methanolic extract of Lawsonia inermis (LIM) in rat model along with its antioxidant activity. LIM shows phenolic content 146.3Milligrams of Gallic acid equivalent present per gram of extract and 19.8 Milligrams of rutin per gram of extract of Total flavonoid content with IC50 value 42.99μg/ml. bilateral ovariectomized rat model in which Healthy female wistar rats were used for screening. Treatment with LIM was carried out using graded doses of 25mg/kg, 50mg/kg and 100mg/kg for period of 28 days. The negative control group comprised of ovariectomized rats along with saline treatment for four weeks whereas sham operated rats were used as positive control.LIM showed a decrease in bone turnover by preventing loss of urinary calcium and phosphorous moreover it decreased the alkaline phosphatase levels and loss of bone density is prevented by LIM suggesting decrease in osteoclast activity.

Keywords: antioxidant, osteoclast, osteoporosis, ovariectomized

Procedia PDF Downloads 407
985 Genotypic and Allelic Distribution of Polymorphic Variants of Gene SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) and Their Association to the Clinical Response to Metformin in Adult Pakistani T2DM Patients

Authors: Sadaf Moeez, Madiha Khalid, Zoya Khalid, Sania Shaheen, Sumbul Khalid

Abstract:

Background: Inter-individual variation in response to metformin, which has been considered as a first line therapy for T2DM treatment is considerable. In the current study, it was aimed to investigate the impact of two genetic variants Leu125Phe (rs77474263) and Gly64Asp (rs77630697) in gene SLC47A1 on the clinical efficacy of metformin in T2DM Pakistani patients. Methods: The study included 800 T2DM patients (400 metformin responders and 400 metformin non-responders) along with 400 ethnically matched healthy individuals. The genotypes were determined by allele-specific polymerase chain reaction. In-silico analysis was done to confirm the effect of the two SNPs on the structure of genes. Association was statistically determined using SPSS software. Results: Minor allele frequency for rs77474263 and rs77630697 was 0.13 and 0.12. For SLC47A1 rs77474263 the homozygotes of one mutant allele ‘T’ (CT) of rs77474263 variant were fewer in metformin responders than metformin non-responders (29.2% vs. 35.5 %). Likewise, the efficacy was further reduced (7.2% vs. 4.0 %) in homozygotes of two copies of ‘T’ allele (TT). Remarkably, T2DM cases with two copies of allele ‘C’ (CC) had 2.11 times more probability to respond towards metformin monotherapy. For SLC47A1 rs77630697 the homozygotes of one mutant allele ‘A’ (GA) of rs77630697 variant were fewer in metformin responders than metformin non-responders (33.5% vs. 43.0 %). Likewise, the efficacy was further reduced (8.5% vs. 4.5%) in homozygotes of two copies of ‘A’ allele (AA). Remarkably, T2DM cases with two copies of allele ‘G’ (GG) had 2.41 times more probability to respond towards metformin monotherapy. In-silico analysis revealed that these two variants affect the structure and stability of their corresponding proteins. Conclusion: The present data suggest that SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) polymorphisms were associated with the therapeutic response of metformin in T2DM patients of Pakistan.

Keywords: diabetes, T2DM, SLC47A1, Pakistan, polymorphism

Procedia PDF Downloads 159
984 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil

Procedia PDF Downloads 238
983 Potential Therapeutic Effect of Obestatin in Oral Mucositis

Authors: Agnieszka Stempniewicz, Piotr Ceranowicz, Wojciech Macyk, Jakub Cieszkowski, Beata Kuśnierz-Cabała, Katarzyna Gałązka, Zygmunt Warzecha

Abstract:

Objectives: There are numerous strategies for the prevention or treatment of oral mucositis. However, their effectiveness is limited and does not correspond to expectations. Recent studies have shown that obestatin exhibits a protective effect and accelerates the healing of gastrointestinal mucosa. The aim of the present study was to examine the influence of obestatin administration on oral ulcers in rats. Methods: lingual ulcers were induced by the use of acetic acid. Rats were treated twice a day intraperitoneally with saline or obestatin(4, 8, or 16 nmol/kg/dose) for five days. The study determined: lingual mucosa morphology, cell proliferation, mucosal blood flow, and mucosal pro-inflammatory interleukin-1β level(IL-1β). Results: In animals without induction of oral ulcers, treatment with obestatin was without any effect. Obestatin administration in rats with lingual ulcers increased the healing rate of these ulcers. Obestatin given at the dose of 8 or 16 nmol/kg/dose caused the strongest and similar therapeutic effect. This result was associated with a significant increase in blood flow and cell proliferation in gingival mucosa, as well as a significant decrease in IL-1β level. Conclusions: Obestatin accelerates the healing of lingual ulcers in rats. This therapeutic effect is well-correlated with an increase in blood flow and cell proliferation in oral mucosa, as well as a decrease in pro-inflammatory IL-1β levels. Obestatin is a potentially useful candidate for the prevention and treatment of oral mucositis. Acknowledgment: Agnieszka Stempniewicz acknowledges the support of InterDokMed project no. POWR.03.02.00- 00-I013/16.

Keywords: oral mucositis, ulcers, obestatin, lingual mucosa

Procedia PDF Downloads 73
982 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water

Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai

Abstract:

Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.

Keywords: disease, EHP, inland saline water, shrimp culture

Procedia PDF Downloads 262
981 The Utilization of Tea Extract within the Realm of the Food Industry

Authors: Raana Babadi Fathipour

Abstract:

Tea, a beverage widely cherished across the globe, has captured the interest of scholars with its recent acknowledgement for possessing noteworthy health advantages. Of particular significance is its proven ability to ward off ailments such as cancer and cardiovascular afflictions. Moreover, within the realm of culinary creations, lipid oxidation poses a significant challenge for food product development. In light of these aforementioned concerns, this present discourse turns its attention towards exploring diverse methodologies employed in extracting polyphenols from various types of tea leaves and examining their utility within the vast landscape of the ever-evolving food industry. Based on the discoveries unearthed in this comprehensive investigation, it has been determined that the fundamental constituents of tea are polyphenols possessed of intrinsic health-enhancing properties. This includes an assortment of catechins, namely epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Moreover, gallic acid, flavonoids, flavonols and theaphlavins have also been detected within this aromatic beverage. Of these myriad components examined vigorously in this study's analysis, catechin emerges as particularly beneficial. Multiple techniques have emerged over time to successfully extract key compounds from tea plants, including solvent-based extraction methodologies, microwave-assisted water extraction approaches and ultrasound-assisted extraction techniques. In particular, consideration is given to microwave-assisted water extraction method as a viable scheme which effectively procures valuable polyphenols from tea extracts. This methodology appears adaptable for implementation within sectors such as dairy production along with meat and oil industries alike.

Keywords: camellia sinensis, extraction, food application, shelf life, tea

Procedia PDF Downloads 70
980 Impact of Cd and Pb Impregnation on the Health of an Adult Population Neighbouring a Landfill

Authors: M. Cabral, A. Verdin, G. Garçon, A. Touré, C. Diop, M. Fall, S. Bouhsina, D. Dewaele, F.Cazier, A. Tall Dia, P. Shirali, A. Diouf

Abstract:

This case-control study dealt with the health adverse effects within the population neighboring the Mbeubeuss waste dump, which is located near the district of Malika (Diamalaye II) in Dakar (Senegal). All the household and industrial waste arising from Dakar are stored in this open landfill without being covered and are therefore possible sources of Pb and Cd contaminated air emissions and lixiviates. The objective of this study is part of improving the health of the population neighboring Mbeubeuss by determining Pb and Cd concentrations both in environment and humans, and studying possible renal function alterations within the adults. Soil and air samples were collected in the control site (Darou Salam) and the waste dump neighboring site (Diamalaye II). Control and exposed adults were recruited as living in Darou Salam (n = 52) and in Diamalaye II (n = 77). Pb and Cd concentrations in soil, air and biological samples were determined. Moreover, we were interested in analyzing some impregnation (zinc protoporphyrin, d-aminolevulinic acid dehydratase) and oxidative stress biomarkers (malonedialdehyde, gluthatione status), in addition to several nephrotoxicity parameters (creatinuria, proteinuria, lactate dehydrogenase, CC16 protein, glutathione S-transferase-alpha and retinol binding protein) in blood and/or urine. The results showed the significant Pb and Cd contamination of the soil and air samples derived from the landfill, and therefore of the neighboring population of adults. This critical exposure to environmental Pb and Cd had some harmful consequences for their health, as shown by the reported oxidative stress and nephrotoxicity signs.

Keywords: Pb and Cd environmental exposure, impregnation markers, landfill, nephrotoxicity markers

Procedia PDF Downloads 442
979 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc

Abstract:

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.

Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake

Procedia PDF Downloads 529
978 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 623
977 Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B

Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben

Abstract:

Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes.

Keywords: Coula edulis, antioxidant, scavenging activity, amylase, invertase

Procedia PDF Downloads 351
976 Formulation and Optimization of Topical 5-Fluorouracil Microemulsions Using Central Compisite Design

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Water in oil topical microemulsions of 5-FU were developed and optimized using face centered central composite design. Topical w/o microemulsion of 5-FU were prepared using sorbitan monooleate (Span 80), polysorbate 80 (Tween 80), with different oils such as oleic acid (OA), triacetin (TA), and isopropyl myristate (IPM). The ternary phase diagrams designated the microemulsion region and face centered central composite design helped in determining the effects of selected variables viz. type of oil, smix ratio and water concentration on responses like drug content, globule size and viscosity of microemulsions. The CCD design exhibited that the factors have statistically significant effects (p<0.01) on the selected responses. The actual responses showed excellent agreement with the predicted values as suggested by the CCD with lower residual standard error. Similarly, the optimized values were found within the range as predicted by the model. Furthermore, other characteristics of microemulsions like pH, conductivity were investigated. For the optimized microemulsion batch, ex-vivo skin flux, skin irritation and retention studies were performed and compared with marketed 5-FU formulation. In ex vivo skin permeation studies, higher skin retention of drug and minimal flux was achieved for optimized microemulsion batch then the marketed cream. Results confirmed the actual responses to be in agreement with predicted ones with least residual standard errors. Controlled release of drug was achieved for the optimized batch with higher skin retention of 5-FU, which can further be utilized for the treatment of many dermatological disorders.

Keywords: 5-FU, central composite design, microemulsion, ternanry phase diagram

Procedia PDF Downloads 479
975 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia

Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan

Abstract:

Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.

Keywords: medicinal plants, asteraceae, polygonaceae, hepg2

Procedia PDF Downloads 127
974 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date

Abstract:

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Keywords: combined effect, delay addition, heat stimulation, flow of mortar

Procedia PDF Downloads 202
973 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 493
972 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 190
971 The Influence of Firm Characteristics on Profitability: Evidence from Italian Hospitality Industry

Authors: Elisa Menicucci, Guido Paolucci

Abstract:

Purpose: The aim of this paper is to investigate the factors influencing profitability in the Italian hospitality industry during the period 2008-2016. Design/methodology/approach: This study examines the profitability and its determinants using a sample of 2366 Italian hotel firms. First, we use a multidimensional measure of profitability including attributes as return on equity, return on assets and occupancy rate. Second, we examine variables that are potentially related with performance and we sort these into five categories: market variables, business model, ownership structure, management education and control variables. Findings: The results show that financial crisis, business model and ownership structure influence profitability of hotel firms. Specific factors such as the internationalization, location, firm’s declaring accommodation as their primary activity and chain affiliation are associated positively with profitability. We also find that larger hotel firms have higher performance rankings, while hotels with higher operating cash flow volatility, greater sales volatility and a higher occurrence of losses have lower profitability. Research limitations/implications: Findings suggest the importance of considering firm specific factors to evaluate the profitability of a hotel firm. Results also provide evidence for academics to critically evaluate factors that would ensure profitability of hotels in developed countries such as Italy. Practical implications: This investigation offers valuable information and strategic implications for government, tourism policymakers, tourist hotel owners, hoteliers and tourism managers in their decision-making. Originality/value: This paper provides interesting insights into the characteristics and practices of profitable hotels in Italy. Few econometric studies empirically explored the determinants of performance in the European hospitality field so far. Therefore, this paper tries to close an important gap in the existing literature improving the understanding of profitability in the Italian hospitality industry.

Keywords: hotel firms, profitability, determinants, Italian hospitality industry

Procedia PDF Downloads 389
970 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest

Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda

Abstract:

To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.

Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates

Procedia PDF Downloads 97
969 Nanopack: A Nanotechnology-Based Antimicrobial Packaging Solution for Extension of Shelf Life and Food Safety

Authors: Andy Sand, Naama Massad – Ivanir, Nadav Nitzan, Elisa Valderrama, Alfred Wegenberger, Koranit Shlosman, Rotem Shemesh, Ester Segal

Abstract:

Microbial spoilage of food products is of great concern in the food industry due to the direct impact on the shelf life of foods and the risk of foodborne illness. Therefore, food packaging may serve as a crucial contribution to keep the food fresh and suitable for consumption. Active packaging solutions that have the ability to inhibit the development of microorganism in food products attract a lot of interest, and many efforts have been made to engineer and assimilate such solutions on various food products. NanoPack is an EU-funded international project aiming to develop state-of-the-art antimicrobial packaging systems for perishable foods. The project is based on natural essential oils which possess significant antimicrobial activity against many bacteria, yeasts and molds. The essential oils are encapsulated in natural aluminosilicate clays, halloysite nanotubes (HNT's), that serves as a carrier for the volatile essential oils and enable their incorporation into polymer films. During the course of the project, several polyethylene films with diverse essential oils combinations were designed based on the characteristics of their target food products. The antimicrobial activity of the produced films was examined in vitro on a broad spectrum of microorganisms including gram-positive and gram-negative bacteria, aerobic and anaerobic bacteria, yeasts and molds. The films that showed promising in vitro results were successfully assimilated on in vivo active packaging of several food products such as cheese, bread, fruits and raw meat. The results of the in vivo analyses showed significant inhibition of the microbial spoilage, indicating the strong contribution of the NanoPack packaging solutions on the extension of shelf life and reduction of food waste caused by early spoilage throughout the supply chain.

Keywords: food safety, food packaging, essential oils, nanotechnology

Procedia PDF Downloads 138
968 Differential Expression of GABA and Its Signaling Components in Ulcerative Colitis and Irritable Bowel Syndrome Pathogenesis

Authors: Surbhi Aggarwal, Jaishree Paul

Abstract:

Background: Role of GABA has been implicated in autoimmune diseases like multiple sclerosis, type1 diabetes and rheumatoid arthritis where they modulate the immune response but role in gut inflammation has not been defined. Ulcerative colitis (UC) and diarrhoeal predominant irritable bowel syndrome (IBS-D) both involve inflammation of gastrointestinal tract. UC is a chronic, relapsing and idiopathic inflammation of gut. IBS is a common functional gastrointestinal disorder characterised by abdominal pain, discomfort and alternating bowel habits. Mild inflammation is known to occur in IBS-D. Aim: Aim of this study was to investigate the role of GABA in UC as well as in IBS-D. Materials and methods: Blood and biopsy samples from UC, IBS-D and controls were collected. ELISA was used for measuring level of GABA in serum of UC, IBS-D and controls. RT-PCR analysis was done to determine GABAergic signal system in colon biopsy of UC, IBS-D and controls. RT-PCR was done to check the expression of proinflammatory cytokines. CurveExpert 1.4, Graphpad prism-6 software were used for data analysis. Statistical analysis was done by unpaired, two-way student`s t-test. All sets of data were represented as mean± SEM. A probability level of p < 0.05 was considered statistically significant. Results and conclusion: Significantly decreased level of GABA and altered GABAergic signal system was detected in UC and IBS-D as compared to controls. Significantly increased expression of proinflammatory cytokines was also determined in UC and IBS-D as compared to controls. Hence we conclude that insufficient level of GABA in UC and IBS-D leads to overproduction of proinflammatory cytokines which further contributes to inflammation. GABA may be used as a promising therapeutic target for treatment of gut inflammation or other inflammatory diseases.

Keywords: diarrheal predominant irritable bowel syndrome, γ-aminobutyric acid (GABA), inflammation, ulcerative colitis

Procedia PDF Downloads 226
967 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 154
966 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria

Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda

Abstract:

Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.

Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic

Procedia PDF Downloads 346
965 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 301
964 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 255
963 A Relational Approach to Adverb Use in Interactions

Authors: Guillaume P. Fernandez

Abstract:

Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.

Keywords: personal network, adverbs, interactions, social influence

Procedia PDF Downloads 67