Search results for: monitoring tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7803

Search results for: monitoring tool

3513 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method

Authors: Md. Moinul Islam, N. M. Golam Zakaria

Abstract:

Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.

Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function

Procedia PDF Downloads 220
3512 Method Validation for Heavy Metal Determination in Spring Water and Sediments

Authors: Habtamu Abdisa

Abstract:

Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.

Keywords: method validation, heavy metal, spring water, sediment, method detection limit

Procedia PDF Downloads 68
3511 Error Analysis of Students’ Freewriting: A Study of Adult English Learners’ Errors

Authors: Louella Nicole Gamao

Abstract:

Writing in English is accounted as a complex skill and process for foreign language learners who commit errors in writing are found as an inevitable part of language learners' writing. This study aims to explore and analyze the learners of English-as-a foreign Language (EFL) freewriting in a University in Taiwan by identifying the category of mistakes that often appear in their freewriting activity and analyzing the learners' awareness of each error. Hopefully, this present study will be able to gain further information about students' errors in their English writing that may contribute to further understanding of the benefits of freewriting activity that can be used for future purposes as a powerful tool in English writing courses for EFL classes. The present study adopted the framework of error analysis proposed by Dulay, Burt, and Krashen (1982), which consisted of a compilation of data, identification of errors, classification of error types, calculation of frequency of each error, and error interpretation. Survey questionnaires regarding students' awareness of errors were also analyzed and discussed. Using quantitative and qualitative approaches, this study provides a detailed description of the errors found in the students'freewriting output, explores the similarities and differences of the students' errors in both academic writing and freewriting, and lastly, analyzes the students' perception of their errors.

Keywords: error, EFL, freewriting, taiwan, english

Procedia PDF Downloads 108
3510 Women Academics' Insecure Identity at Work: A Millennials Phenomenon

Authors: Emmanouil Papavasileiou, Nikos Bozionelos, Liza Howe-Walsh, Sarah Turnbull

Abstract:

Purpose: The research focuses on women academics’ insecure identity at work and examines its link with generational identity. The aim is to enrich understanding of identities at work as a crucial attribute of managing academics in the context of the proliferation of managerialist controls of audit, accountability, monitoring, and performativity. Methodology: Positivist quantitative methodology was utilized. Data were collected from the Scientific Women's Academic Network (SWAN) Charter. Responses from 155 women academics based in the British Higher Education system were analysed. Findings: Analysis showed high prevalence of strong imposter feelings among participants, suggesting high insecurity at work among women academics in the United Kingdom. Generational identity was related to imposter feelings. In particular, Millennials scored significantly higher than the other generational groups. Research implications: The study shows that imposter feelings are variously manifested among the prevalent generations of women academics, while generational identity is a significant antecedent of such feelings. Research limitations: Caution should be exercised in generalizing the findings to national cultural contexts beyond the United Kingdom. Practical and social implications: Contrary to popular depictions of Millennials as self-centered, narcissistic, materialistic and demanding, women academics who are members of this generational group appear significantly more insecure than the preceding generations. Value: The study provides insightful understandings into women academics’ identity at work as a function of generational identity, and provides a fruitful avenue for further research within and beyond this gender group and profession.

Keywords: academics, generational diversity, imposter feelings, United Kingdom, women, work identity

Procedia PDF Downloads 146
3509 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211
3508 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment

Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai

Abstract:

Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.

Keywords: computational methods, MATLAB, seismic hazard, seismic measurements

Procedia PDF Downloads 340
3507 The Relationship between Social Capital and Knowledge Sharing in the Ministry of Culture and Islamic Guidance(Iran)

Authors: Narges Sadat Myrmousavy, Maryam Eslampanah

Abstract:

The aim of this study was to investigate the relationship between social capital and knowledge sharing is the Ministry of Culture and Islamic Guidance. They are descriptive correlation study. The study sample consisted of all the experts in the Ministry of Culture and Islamic Guidance helping professionals headquarters in Tehran in the summer period is 2012, the number is 650. Random sampling is targeted. The sample size is 400. The data collection tool was a questionnaire that was used for the preparation of a standard questionnaire. They also examine the assumptions of the regression coefficient for the relationship between variables in order to investigate the main hypothesis test is used. The findings suggest that the structural and knowledge-sharing between components, there is a direct relationship. The components of the relationship between Impression management and knowledge sharing, there is a direct relationship. There was no significant relationship between Individual pro-social motives and knowledge sharing. Both components of the cognitive aspects of open mindedness and competence are directly related with knowledge sharing. Finally, the comparison between the different dimensions of social capital, the largest of its structure, and its relationship with knowledge sharing is the least relation.

Keywords: social capital, knowledge sharing, ministry of culture and Islamic guidance (Iran), open mindedness, pro-social motives

Procedia PDF Downloads 503
3506 Whole Body Cooling Hypothermia Treatment Modelling Using a Finite Element Thermoregulation Model

Authors: Ana Beatriz C. G. Silva, Luiz Carlos Wrobel, Fernando Luiz B. Ribeiro

Abstract:

This paper presents a thermoregulation model using the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a FEM package applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter method of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and a intravascular catheter. A comparison is made between the results obtained and the effects of each case in brain temperature reduction in a required time, maintenance of body temperature at moderate hypothermia levels and gradual rewarming.

Keywords: brain cooling, finite element method, hypothermia treatment, thermoregulation

Procedia PDF Downloads 311
3505 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia

Authors: Melaku Tsehay

Abstract:

The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.

Keywords: data quality, immunization, verification factor, pastoralist region

Procedia PDF Downloads 124
3504 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of e-assessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: secure technology acceptance, e-assessment security, e-assessment, education technology

Procedia PDF Downloads 459
3503 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis

Authors: Qamar Iqbal

Abstract:

Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.

Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment

Procedia PDF Downloads 595
3502 Coping for Academic Women Departmental Heads during COVID-19: A Capabilities Approach Perspective

Authors: Juliet Ramohai

Abstract:

This paper explores how women departmental heads in higher education experience leadership in a time of the COVID-19 crises. The focus is mostly on their care and coping as they work in virtual spaces. Most scholars have looked at the effects and challenges that different employees face while working from home during a lockdown. However, very few take a dedicated focus on women in leadership and the coping mechanisms and resources that they use for effective leadership during this difficult time. The paper draws on two aspects of Sen’s Capabilities approach, functionings, and agency, to cast a closer understanding of the institutional and individual coping mechanisms that might be at these women's disposal. The qualitative approach used for this paper and a feminist lens provides a critical and in-depth understanding of the real-life stories of the women and how they make sense of their virtual leadership. Data for this paper was collected through semi-structured interviews with 10 women in the positions of head of departments and analysed thematically using capabilities approach concepts as an analytical tool. The findings in this paper indicate that functionings and freedoms are tightly linked to institutional ethnographies. These ethnographies might support or hamper coping for women leaders, especially during times of crisis.

Keywords: capability approach, women leaders, higher education, COVID-19

Procedia PDF Downloads 186
3501 Information Pollution: Exploratory Analysis of Subs-Saharan African Media’s Capabilities to Combat Misinformation and Disinformation

Authors: Muhammed Jamiu Mustapha, Jamiu Folarin, Stephen Obiri Agyei, Rasheed Ademola Adebiyi, Mutiu Iyanda Lasisi

Abstract:

The role of information in societal development and growth cannot be over-emphasized. It has remained an age-long strategy to adopt the information flow to make an egalitarian society. The same has become a tool for throwing society into chaos and anarchy. It has been adopted as a weapon of war and a veritable instrument of psychological warfare with a variety of uses. That is why some scholars posit that information could be deployed as a weapon to wreak “Mass Destruction" or promote “Mass Development". When used as a tool for destruction, the effect on society is like an atomic bomb which when it is released, pollutes the air and suffocates the people. Technological advancement has further exposed the latent power of information and many societies seem to be overwhelmed by its negative effect. While information remains one of the bedrock of democracy, the information ecosystem across the world is currently facing a more difficult battle than ever before due to information pluralism and technological advancement. The more the agents involved try to combat its menace, the difficult and complex it is proving to be curbed. In a region like Africa with dangling democracy enfolds with complexities of multi-religion, multi-cultures, inter-tribes, ongoing issues that are yet to be resolved, it is important to pay critical attention to the case of information disorder and find appropriate ways to curb or mitigate its effects. The media, being the middleman in the distribution of information, needs to build capacities and capabilities to separate the whiff of misinformation and disinformation from the grains of truthful data. From quasi-statistical senses, it has been observed that the efforts aimed at fighting information pollution have not considered the built resilience of media organisations against this disorder. Apparently, the efforts, resources and technologies adopted for the conception, production and spread of information pollution are much more sophisticated than approaches to suppress and even reduce its effects on society. Thus, this study seeks to interrogate the phenomenon of information pollution and the capabilities of select media organisations in Sub-Saharan Africa. In doing this, the following questions are probed; what are the media actions to curb the menace of information pollution? Which of these actions are working and how effective are they? And which of the actions are not working and why they are not working? Adopting quantitative and qualitative approaches and anchored on the Dynamic Capability Theory, the study aims at digging up insights to further understand the complexities of information pollution, media capabilities and strategic resources for managing misinformation and disinformation in the region. The quantitative approach involves surveys and the use of questionnaires to get data from journalists on their understanding of misinformation/disinformation and their capabilities to gate-keep. Case Analysis of select media and content analysis of their strategic resources to manage misinformation and disinformation is adopted in the study while the qualitative approach will involve an In-depth Interview to have a more robust analysis is also considered. The study is critical in the fight against information pollution for a number of reasons. One, it is a novel attempt to document the level of media capabilities to fight the phenomenon of information disorder. Two, the study will enable the region to have a clear understanding of the capabilities of existing media organizations to combat misinformation and disinformation in the countries that make up the region. Recommendations emanating from the study could be used to initiate, intensify or review existing approaches to combat the menace of information pollution in the region.

Keywords: disinformation, information pollution, misinformation, media capabilities, sub-Saharan Africa

Procedia PDF Downloads 161
3500 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65
3499 Corpus-Based Description of Core English Nouns of Pakistani English, an EFL Learner Perspective at Secondary Level

Authors: Abrar Hussain Qureshi

Abstract:

Vocabulary has been highlighted as a key indicator in any foreign language learning program, especially English as a foreign language (EFL). It is often considered a potential tool in foreign language curriculum, and its deficiency impedes successful communication in the target language. The knowledge of the lexicon is very significant in getting communicative competence and performance. Nouns constitute a considerable bulk of English vocabulary. Rather, they are the bones of the English language and are the main semantic carrier in spoken and written discourse. As nouns dominate the bulk of the English lexicon, their role becomes all the more potential. The undertaken research is a systematic effort in this regard to work out a list of highly frequent list of Pakistani English nouns for the EFL learners at the secondary level. It will encourage autonomy for the EFL learners as well as will save their time. The corpus used for the research has been developed locally from leading English newspapers of Pakistan. Wordsmith Tools has been used to process the research data and to retrieve word list of frequent Pakistani English nouns. The retrieved list of core Pakistani English nouns is supposed to be useful for English language learners at the secondary level as it covers a wide range of speech events.

Keywords: corpus, EFL, frequency list, nouns

Procedia PDF Downloads 103
3498 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
3497 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)

Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko

Abstract:

Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.

Keywords: attenuation, Ku-Band, microwave communication, rain rates

Procedia PDF Downloads 485
3496 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
3495 Evaluation of the Quality of Care for Premature Babies in the Neonatology Unit of the Centre Hospitalier Universitaire de Kamenge

Authors: Kankurize Josiane, Nizigama Mediatrice

Abstract:

Introduction: Burundi records a still high infant mortality rate. Despite efforts to reduce it, prematurity is still the leading cause of death in the neonatal period. The objective of this study was to assess the quality of care for premature babies hospitalized in the neonatology unit of the Centre Hospitalier Universitaire de Kamenge. Method: This was a descriptive and evaluative prospective carried out in the neonatology unit of the CHUK (Centre Hospitalier Universitaire de Kamenge) from December 1, 2016, to May 31, 2017, including 70 premature babies, 65 mothers of premature babies and 15 providers including a pediatrician and 14 nurses. Using a tool developed by the World Health Organization and adapted to the local context by national experts, the quality of care for premature babies was assessed. Results: Prematurity accounted for 44.05% of hospitalizations in neonatology at the University Hospital of Kamenge. The assessment of the quality of care for premature babies was of low quality, with an average global score of 2/5 (50%), indicating that there is a considerable need for improvement to reach the standards. Conclusion: Efforts must be made to have infrastructures, materials, and human resources sufficient in quality and quantity so that the neonatology unit of the CHUK can be efficient and optimize the care of premature babies.

Keywords: quality of care, evaluation, premature, standards

Procedia PDF Downloads 60
3494 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 244
3493 Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications

Authors: Lingaraju Dumpala, Laxmi Mohan Kumar Chintada, Devadas Deepu, Pravin Kumar Yadav

Abstract:

Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated.

Keywords: Underwater Friction Stir Welding(UFSW), Al alloys, mechanical properties, Normal Friction Stir Welding(NFSW)

Procedia PDF Downloads 288
3492 Centre of the Milky Way Galaxy

Authors: Svanik Garg

Abstract:

The center of our galaxy is often referred to as the ‘galactic center’ and has many theories associated with its true nature. Given the existence of interstellar dust and bright stars, it is nearly impossible to observe its position, about 24,000 light-years away. Due to this uncertainty, humans have often speculated what could exist at a vantage point upon which the entire galaxy spirals and revolves, with wild theories ranging from the presence of dark matter to black holes and wormholes. Data up till now on the same is very limited, and conclusions are to the best of the author's knowledge, as the only method to view the galactic center is through x-ray and infrared imaging, which counter the problems mentioned earlier. This paper examines, first, the existence of a galactic center, then the methods to identify what it might contain, and lastly, possible conclusions along with implications of the findings. Several secondary sources, along with a python tool to analyze x-ray readings were used to identify the true nature of what lies in the center of the galaxy, whether it be a void due to the existence of dark energy or a black hole. Using this roughly 4-part examination, as a result of this study, a plausible definition of the galactic center was formulated, keeping in mind the rather wild theories, data and different ideas proposed by researchers. This paper aims to dissect the theory of a galactic center and identify its nature to help understand what it shows about galaxies and our universe.

Keywords: milky way, galaxy, dark energy, stars

Procedia PDF Downloads 126
3491 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens

Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa

Abstract:

Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.

Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens

Procedia PDF Downloads 311
3490 3D-printing for Ablation Planning in Patients Undergoing Atrial Fibrillation Ablation: 3D-GALA Trial

Authors: Terentes Printzios Dimitrios, Loanna Gourgouli, Vlachopoulos Charalambos

Abstract:

Aims: Atrial fibrillation (AF) remains one of the major causes of stroke, heart failure, sudden death and cardiovascular morbidity. Ablation techniques are becoming more appealing after the latest results of randomized trials showing the overall clinical benefit. On the other hand, imaging techniques and the frontier application of 3D printing are emerging as a valuable ally for cardiac procedures. However, no randomized trial has directly assessed the impact of preprocedural imaging and especially 3D printing guidance for AF ablation. The present study is designed to investigate for the first time the effect of 3D printing of the heart on the safety and effectiveness of the ablation procedure. Methods and design: The 3D-GALA trial is a randomized, open-label, controlled, multicentre clinical trial of 2 parallel groups designed to enroll a total of 100 patients undergoing ablation using cryo-balloon for paroxysmal and persistent AF. Patients will be randomized with a patient allocation ratio of 1: 1 to preprocedural MRI scan of the heart and 3D printing of left atrium and pulmonary veins and cryoablation versus standard cryoablation without imaging. Patients will be followed up to 6 months after the index procedure. The primary outcome measure is the reduction of radiation dose and contrast amount during pulmonary veins isolation. Secondary endpoints will include the percentage of atrial fibrillation relapse at 24h-Holter electrocardiogram monitoring at 6 months after initial treatment. Discussion: To our knowledge, the 3D-GALA trial will be the first study to provide evidence about the clinical impact of preprocedural imaging and 3D printing before cryoablation.

Keywords: atrial fibrillation, cardiac MRI, cryoablation, 3-d printing

Procedia PDF Downloads 178
3489 Corporate Governance Role of Audit Committees in the Banking Sector: Evidence from Libya

Authors: Abdulaziz Abdulsaleh

Abstract:

This study aims at identifying the practices that should be taken into consideration by audit committees as a tool of corporate governance in Libyan commercial banks by investigating various perceptions on this topic. The study is based on a questionnaire submitted to audit committees ‘members at Libyan commercial banks, directors of internal audit departments as well as members of board of directors at these banks in addition to a number of external auditors and academic staff from Libyan universities. The study reveals that the role of audit committees has to be shifted from traditional areas of accounting to a broader role including functions related to financial reporting, audit planning, support the independence of internal and external auditors, acting as a channel of communication between external auditors and board of directors, reviewing external audit, and evaluating internal control systems. Although the study is a starting point in developing a framework of good audit committees’ practices in Libya, it is believed that the adoption of its results can result in enhancing the corporate governance practices not only in the banking sector but also in the entire corporate sector in Libya.

Keywords: audit committees, corporate governance, commercial banks, Libya

Procedia PDF Downloads 403
3488 The Impact of Pediatric Cares, Infections and Vaccines on Community and People’s Lives

Authors: Nashed Atef Nashed Farag

Abstract:

Introduction: Reporting adverse events following vaccination remains a challenge. WHO has mandated pharmacovigilance centers around the world to submit Adverse Events Following Immunization (AEFI) reports from different countries to a large electronic database of adverse drug event data called Vigibase. Despite sufficient information about AEFIs on Vigibase, they are not available to the general public. However, the WHO has an alternative website called VigiAccess, an open-access website that serves as an archive for reported adverse reactions and AEFIs. The aim of the study was to establish a reporting model for a number of commonly used vaccines in the VigiAccess system. Methods: On February 5, 2018, VigiAccess comprehensively searched for ESSI reports on the measles vaccine, oral polio vaccine (OPV), yellow fever vaccine, pneumococcal vaccine, rotavirus vaccine, meningococcal vaccine, tetanus vaccine, and tuberculosis vaccine (BCG). These are reports from all pharmacovigilance centers around the world since they joined the WHO Drug Monitoring Program. Results: After an extensive search, VigiAccess found 9,062 AEFIs from the measles vaccine, 185,829 AEFIs from the OPV vaccine, 24,577 AEFIs from the yellow fever vaccine, 317,208 AEFIs from the pneumococcal vaccine, 73,513 AEFIs from the rotavirus vaccine, and 145,447 AEFIs from meningococcal cal vaccine, 22,781 EI FI vaccines against tetanus and 35,556 BCG vaccines against AEFI. Conclusion: The study found that among the eight vaccines examined, pneumococcal vaccines were associated with the highest number of AEFIs, while measles vaccines were associated with the fewest AEFIs.

Keywords: surgical approach, anatomical approach, decompression, axillary nerve, quadrangular space adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK vaccines, adverse reactions, VigiAccess, adverse event reporting

Procedia PDF Downloads 72
3487 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
3486 Exploring the Impact of Feedback on English as a Foreign Language Speaking Proficiency

Authors: Santri Emilin Pingsaboi Djahimo, Ikhfi Imaniah

Abstract:

Helping students recognize both their strengths and weaknesses is a beneficial strategy for teachers to be implemented in the classroom, and feedback has been acknowledged as an effective tool to achieve this goal. It will allow teachers to assess the students’ progress, provide targeted support for them, and adjust both teaching and learning strategies. This research has investigated the importance of feedback in English as a Foreign Language (EFL) speaking class in East Nusa Tenggara Province, Indonesia. Through a qualitative study, it has shed light on the crucial roles of feedback in the process of English Language Teaching (ELT), especially, in the context of developing oral communication or speaking skills. Additionally, it has also examined students’ responses to feedback from their teacher by grouping them based on their semester, scores (GPA), and gender. This study, which seeks to provide insights into how feedback practices can be optimized to maximize learning outcomes in the English-speaking classroom, has revealed that these groups of students have different level of needs for feedback, yet all prefer constructive feedback. Looking at the results, it is highly expected that this study can contribute to a deeper understanding of the correlation between feedback and English language learning outcomes, particularly, in terms of speaking proficiency.

Keywords: feedback, English as a foreign language, speaking class, English language teaching

Procedia PDF Downloads 24
3485 A Rationale to Describe Ambident Reactivity

Authors: David Ryan, Martin Breugst, Turlough Downes, Peter A. Byrne, Gerard P. McGlacken

Abstract:

An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated.

Keywords: ambident, Gibbs, nucleophile, rates

Procedia PDF Downloads 84
3484 Contesting Discourses in Physical Education: A Critical Discourse Analysis of 20 Textbooks Used in Physical Education Teacher Education in Denmark

Authors: Annemari Munk Svendsen, Jesper Tinggaard Svendsen

Abstract:

The purpose of this study was to investigate different discourses about the body, movement and the main progression in and aim of Physical Education (PE) that are immersed within Physical Education Teacher Education (PETE) textbooks. The study was based on an examination of Danish PETE course documents listing 296 educational texts prescribed by PETE teachers for PETE programs in Denmark. It presents a more specific analysis of the 20 most used textbooks in Danish PETE. The study found three different discourses termed: (1) Developing the potential for sport, (2) Basis for creative sensing and (3) Being part of a cultural ballast. These discourses represent different ways of conceptualising and appraising PE as a school subject. The results also suggest that PETE textbooks are deeply involved in the (re)construction, struggling and ‘working’ of classical discourses in PE. Furthermore, that PETE textbooks comprise powerful documents that through their recurrent use of high modality are tending to be unequivocal in their suggestions for PE practices. On the basis of these findings, the presentation suggests that PETE teachers may use textbook analysis in the educational program as a tool for enhancing critical reflections upon central ideological dilemmas in PE.

Keywords: critical discourse analysis, critical reflection, physical education teacher education, textbooks

Procedia PDF Downloads 295