Search results for: healthcare monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4396

Search results for: healthcare monitoring

226 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 30
225 Implementing Quality Improvement Projects to Enhance Contraception and Abortion Care Service Provision and Pre-Service Training of Health Care Providers

Authors: Munir Kassa, Mengistu Hailemariam, Meghan Obermeyer, Kefelegn Baruda, Yonas Getachew, Asnakech Dessie

Abstract:

Improving the quality of sexual and reproductive health services that women receive is expected to have an impact on women’s satisfaction with the services, on their continued use and, ultimately, on their ability to achieve their fertility goals or reproductive intentions. Surprisingly, however, there is little empirical evidence of either whether this expectation is correct, or how best to improve service quality within sexual and reproductive health programs so that these impacts can be achieved. The Recent focus on quality has prompted more physicians to do quality improvement work, but often without the needed skill sets, which results in poorly conceived and ultimately unsuccessful improvement initiatives. As this renders the work unpublishable, it further impedes progress in the field of health care improvement and widens the quality chasm. Moreover, since 2014, the Center for International Reproductive Health Training (CIRHT) has worked diligently with 11 teaching hospitals across Ethiopia to increase access to contraception and abortion care services. This work has included improving pre-service training through education and curriculum development, expanding hands-on training to better learn critical techniques and counseling skills, and fostering a “team science” approach to research by encouraging scientific exploration. This is the first time this systematic approach has been applied and documented to improve access to high-quality services in Ethiopia. The purpose of this article is to report initiatives undertaken, and findings concluded by the clinical service team at CIRHT in an effort to provide a pragmatic approach to quality improvement projects. An audit containing nearly 300 questions about several aspects of patient care, including structure, process, and outcome indicators was completed by each teaching hospital’s quality improvement team. This baseline audit assisted in identifying major gaps and barriers, and each team was responsible for determining specific quality improvement aims and tasks to support change interventions using Shewart’s Cycle for Learning and Improvement (the Plan-Do-Study-Act model). To measure progress over time, quality improvement teams met biweekly and compiled monthly data for review. Also, site visits to each hospital were completed by the clinical service team to ensure monitoring and support. The results indicate that applying an evidence-based, participatory approach to quality improvement has the potential to increase the accessibility and quality of services in a short amount of time. In addition, continued ownership and on-site support are vital in promoting sustainability. This approach could be adapted and applied in similar contexts, particularly in other African countries.

Keywords: abortion, contraception, quality improvement, service provision

Procedia PDF Downloads 186
224 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt

Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali

Abstract:

Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.

Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors

Procedia PDF Downloads 260
223 Howard Mold Count of Tomato Pulp Commercialized in the State of São Paulo, Brazil

Authors: M. B. Atui, A. M. Silva, M. A. M. Marciano, M. I. Fioravanti, V. A. Franco, L. B. Chasin, A. R. Ferreira, M. D. Nogueira

Abstract:

Fungi attack large amount of fruits and those who have suffered an injury on the surface are more susceptible to the growth, as they have pectinolytic enzymes that destroy the edible portion forming an amorphous and soft dough. The spores can reach the plant by the wind, rain and insects and fruit may have on its surface, besides the contaminants from the fruit trees, land and water, forming a flora composed mainly of yeasts and molds. Other contamination can occur for the equipment used to harvest, for the use of boxes and contaminated water to the fruit washing, for storage in dirty places. The hyphae in tomato products indicate the use of raw materials contaminated or unsuitable hygiene conditions during processing. Although fungi are inactivated in heat processing step, its hyphae remain in the final product and search for detection and quantification is an indicator of the quality of raw material. Howard Method count of fungi mycelia in industrialized pulps evaluates the amount of decayed fruits existing in raw material. The Brazilian legislation governing processed and packaged products set the limit of 40% of positive fields in tomato pulps. The aim of this study was to evaluate the quality of the tomato pulp sold in greater São Paulo, through a monitoring during the four seasons of the year. All over 2010, 110 samples have been examined; 21 were taking in spring, 31 in summer, 31 in fall and 27 in winter, all from different lots and trademarks. Samples have been picked up in several stores located in the city of São Paulo. Howard method was used, recommended by the AOAC, 19th ed, 2011 16:19:02 technique - method 965.41. Hundred percent of the samples contained fungi mycelia. The count average of fungi mycelia per season was 23%, 28%, 8,2% and 9,9% in spring, summer, fall and winter, respectively. Regarding the spring samples of the 21 samples analyzed, 14.3% were off-limits proposed by the legislation. As for the samples of the fall and winter, all were in accordance with the legislation and the average of mycelial filament count has not exceeded 20%, which can be explained by the low temperatures during this time of the year. The acquired samples in the summer and spring showed high percentage of fungal mycelium in the final product, related to the high temperatures in these seasons. Considering that the limit of 40% of positive fields is accepted for the Brazilian Legislation (RDC nº 14/2014), 3 spring samples (14%) and 6 summer samples (19%) will be over this limit and subject to law penalties. According to gathered data, 82% of manufacturers of this product manage to keep acceptable levels of fungi mycelia in their product. In conclusion, only 9.2% samples were for the limits established by Resolution RDC. 14/2014, showing that the limit of 40% is feasible and can be used by these segment industries. The result of the filament count mycelial by Howard method is an important tool in the microscopic analysis since it measures the quality of raw material used in the production of tomato products.

Keywords: fungi, howard, method, tomato, pulps

Procedia PDF Downloads 356
222 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 233
221 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 189
220 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 61
219 The Knowledge, Attitude, and Practice About Health Information Technology Among First-Generation Muslim Immigrant Women in Atlanta City During the Pandemic

Authors: Awatef Ahmed Ben Ramadan, Aqsa Arshad

Abstract:

Background: There is a huge Muslim migration movement to North America and Europe for several reasons, primarily refuge from war areas and partly to search for better work and educational chances. There are always concerns regarding first-Generation Immigrant women's health and computer literacy, an adequate understanding of the health systems, and the use of the existing healthcare technology and services effectively and efficiently. Language proficiency level, preference for cultural and traditional remedies, socioeconomic factors, fear of stereotyping, limited accessibility to health services, and general unfamiliarity with the existing health services and resources are familiar variables among these women. Aims: The current study aims to assess the health and digital literacy of first-generation Muslim women in Atlanta city. Also, the study aims to examine how the COVID-19 pandemic has encouraged the use of health information technology and increased technology awareness among the targeted women. Methods: The study design is cross-sectional correlational research. The study will be conducted to produce preliminary results that the investigators want to have to supplement an NIH grant application about leveraging information technology to reduce the health inequalities amongst the first-generation immigrant Muslim women in Atlanta City. The investigators will collect the study data in two phases using different tools. Phase one was conducted in June 2022; the investigators used tools to measure health and digital literacy amongst 42 first-generation immigrant Muslim women. Phase two was conducted in November 2022; the investigators measured the Knowledge, Attitude, and Practice (KAP) of using health information technology such as telehealth from a sample of 45 first-generation Muslim immigrant women in Atlanta; in addition, the investigators measured how the current pandemic has affected their KAP to use telemedicine and telehealth services. Both phases' study participants were recruited using convenience sampling methodology. The investigators collected around 40 of 18 years old or older first-generation Muslim immigrant women for both study phases. The study excluded Immigrants who hold work visas and second-generation immigrants. Results: At the point of submitting this abstract, the investigators are still analyzing the study data to produce preliminary results to apply for an NIH grant entitled "Leveraging Health Information Technology (Health IT) to Address and Reduce Health Care Disparities (R01 Clinical Trial Optional)". This research will be the first step of a comprehensive research project to assess and measure health and digital literacy amongst a vulnerable community group. The targeted group might have different points of view from the U.S.-born inhabitants on how to: promote their health, gain healthy lifestyles and habits, screen for diseases, adhere to health treatment and follow-up plans, perceive the importance of using available and affordable technology to communicate with their providers and improve their health, and help in making serious decisions for their health. The investigators aim to develop an educational and instructional health mobile application considering the language and cultural factors that affect immigrants' ability to access different health and social support sources, know their health rights and obligations in their communities, and improve their health behavior and behavior lifestyles.

Keywords: first-generation immigrant Muslim women, telehealth, COVID-19 pandemic, health information technology, health and digital literacy

Procedia PDF Downloads 59
218 The Role of Emotional Intelligence in the Manager's Psychophysiological Activity during a Performance-Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Emotional intelligence (EI) consists of skills for monitoring own emotions and emotions of others, skills for discriminating different emotions, and skills for using this information in thinking and actions. EI enhances, for example, work outcomes and organizational climate. We suggest that the role and manifestations of EI should also be studied in real leadership situations, especially during the emotional, social interaction. Leadership is essentially a process to influence others for reaching a certain goal. This influencing happens by managerial processes and computer-mediated communication (e.g. e-mail) but also by face-to-face, where facial expressions have a significant role in conveying emotional information. Persons with high EI are typically perceived more positively, and they have better social skills. We hypothesize, that during social interaction high EI enhances the ability to detect other’s emotional state and controlling own emotional expressions. We suggest, that emotionally intelligent leader’s experience less stress during social leadership situations, since they have better skills in dealing with the related emotional work. Thus the high-EI leaders would be more able to enjoy these situations, but also be more efficient in choosing appropriate expressions for building constructive dialogue. We suggest, that emotionally intelligent leaders show more positive emotional expressions than low-EI leaders. To study these hypotheses we observed performance review discussions of 40 leaders (24 female) with 78 (45 female) of their followers. Each leader held a discussion with two followers. Psychophysiological methods were chosen because they provide objective and continuous data from the whole duration of the discussions. We recorded sweating of the hands (electrodermal activation) by electrodes placed to the fingers of the non-dominant hand to assess the stress-related physiological arousal of the leaders. In addition, facial electromyography was recorded from cheek (zygomaticus major, activated during e.g. smiling) and periocular (orbicularis oculi, activated during smiling) muscles using electrode pairs placed on the left side of the face. Leader’s trait EI was measured with a 360 questionnaire, filled by each leader’s followers, peers, managers and by themselves. High-EI leaders had less sweating of the hands (p = .007) than the low-EI leaders. It is thus suggested that the high-EI leaders experienced less physiological stress during the discussions. Also, high scores in the factor “Using of emotions” were related to more facial muscle activation indicating positive emotional expressions (cheek muscle: p = .048; periocular muscle: p = .076, almost statistically significant). The results imply that emotionally intelligent managers are positively relaxed during s social leadership situations such as a performance review discussion. The current study also highlights the importance of EI in face-to-face social interaction, given the central role facial expressions have in interaction situations. The study also offers new insight to the biological basis of trait EI. It is suggested that the identification, forming, and intelligently using of facial expressions are skills that could be trained during leadership development courses.

Keywords: emotional intelligence, leadership, performance review discussion, psychophysiology, social interaction

Procedia PDF Downloads 229
217 Hiveopolis - Honey Harvester System

Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios

Abstract:

Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.

Keywords: honey harvesting, honeybee, hiveopolis, nitinol

Procedia PDF Downloads 81
216 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era

Authors: Peggy M. Randon, Lisa Randon

Abstract:

Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.

Keywords: childhood, schizophrenia, policy, United, States, health, disparities

Procedia PDF Downloads 53
215 Examination of Indoor Air Quality of Naturally Ventilated Dwellings During Winters in Mega-City Kolkata

Authors: Tanya Kaur Bedi, Shankha Pratim Bhattacharya

Abstract:

The US Environmental Protection Agency defines indoor air quality as “The air quality within and around buildings, especially as it relates to the health and comfort of building occupants”. According to the 2021 report by the Energy Policy Institute at Chicago, Indian residents, a country which is home to the highest levels of air pollution in the world, lose about 5.9 years from life expectancy due to poor air quality and yet has numerous dwellings dependent on natural ventilation. Currently the urban population spends 90% of the time indoors, this scenario raises a concern for occupant health and well-being. The built environment can affect health directly and indirectly through immediate or long-term exposure to indoor air pollutants. Health effects associated with indoor air pollutants include eye/nose/throat irritation, respiratory diseases, heart disease, and even cancer. This study attempts to demonstrate the causal relationship between the indoor air quality and its determining aspects. Detailed indoor air quality audits were conducted in residential buildings located in Kolkata, India in the months of December and January 2021. According to the air pollution knowledge assessment city program in India, Kolkata is also the second most polluted mega-city after Delhi. Although the air pollution levels are alarming year-long, the winter months are most crucial due to the unfavorable environmental conditions. While emissions remain typically constant throughout the year, cold air is denser and moves slower than warm air, trapping the pollution in place for much longer and consequently is breathed in at a higher rate than the summers. The air pollution monitoring period was selected considering environmental factors and major pollution contributors like traffic and road dust. This study focuses on the relationship between the built environment and the spatial-temporal distribution of air pollutants in and around it. The measured parameters include, temperature, relative humidity, air velocity, particulate matter, volatile organic compounds, formaldehyde, and benzene. A total of 56 rooms were audited, selectively targeting the most dominant middle-income group. The data-collection was conducted using a set of instruments positioned in the human breathing-zone. The study assesses indoor air quality based on factors determining natural ventilation and air pollution dispersion such as surrounding environment, dominant wind, openable window to floor area ratio, windward or leeward side openings, and natural ventilation type in the room: single side or cross-ventilation, floor height, residents cleaning habits, etc.

Keywords: indoor air quality, occupant health, urban housing, air pollution, natural ventilation, architecture, urban issues

Procedia PDF Downloads 100
214 State and Benefit: Delivering the First State of the Bays Report for Victoria

Authors: Scott Rawlings

Abstract:

Victoria’s first State of the Bays report is an historic baseline study of the health of Port Phillip Bay and Western Port. The report includes 50 assessments of 36 indicators across a broad array of topics from the nitrogen cycle and water quality to key marine species and habitats. This paper discusses the processes for determining and assessing the indicators and comments on future priorities identified to maintain and improve the health of these water ways. Victoria’s population is now at six million, and growing at a rate of over 100,000 people per year - the highest increase in Australia – and the population of greater Melbourne is over four million. Port Phillip Bay and Western Port are vital marine assets at the centre of this growth and will require adaptive strategies if they are to remain in good condition and continue to deliver environmental, economic and social benefits. In 2014, it was in recognition of these pressures that the incoming Victorian Government committed to reporting on the state of the bays every five years. The inaugural State of the Bays report was issued by the independent Victorian Commissioner for Environmental Sustainability. The report brought together what is known about both bays, based on existing research. It was a baseline on which future reports will build and, over time, include more of Victoria’s marine environment. Port Phillip Bay and Western Port generally demonstrate healthy systems. Specific threats linked to population growth are a significant pressure. Impacts are more significant where human activity is more intense and where nutrients are transported to the bays around the mouths of creeks and drainage systems. The transport of high loads of nutrients and pollutants to the bays from peak rainfall events is likely to increase with climate change – as will sea level rise. Marine pests are also a threat. More than 100 introduced marine species have become established in Port Phillip Bay and can compete with native species, alter habitat, reduce important fish stocks and potentially disrupt nitrogen cycling processes. This study confirmed that our data collection regime is better within the Marine Protected Areas of Port Phillip Bay than in other parts. The State of the Bays report is a positive and practical example of what can be achieved through collaboration and cooperation between environmental reporters, Government agencies, academic institutions, data custodians, and NGOs. The State of the Bays 2016 provides an important foundation by identifying knowledge gaps and research priorities for future studies and reports on the bays. It builds a strong evidence base to effectively manage the bays and support an adaptive management framework. The Report proposes a set of indicators for future reporting that will support a step-change in our approach to monitoring and managing the bays – a shift from reporting only on what we do know, to reporting on what we need to know.

Keywords: coastal science, marine science, Port Phillip Bay, state of the environment, Western Port

Procedia PDF Downloads 184
213 Web-Based Instructional Program to Improve Professional Development: Recommendations and Standards for Radioactive Facilities in Brazil

Authors: Denise Levy, Gian M. A. A. Sordi

Abstract:

This web based project focuses on continuing corporate education and improving workers' skills in Brazilian radioactive facilities throughout the country. The potential of Information and Communication Technologies (ICTs) shall contribute to improve the global communication in this very large country, where it is a strong challenge to ensure high quality professional information to as many people as possible. The main objective of this system is to provide Brazilian radioactive facilities a complete web-based repository - in Portuguese - for research, consultation and information, offering conditions for learning and improving professional and personal skills. UNIPRORAD is a web based system to offer unified programs and inter-related information about radiological protection programs. The content includes the best practices for radioactive facilities in order to meet both national standards and international recommendations published by different organizations over the past decades: International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA) and National Nuclear Energy Commission (CNEN). The website counts on concepts, definitions and theory about optimization and ionizing radiation monitoring procedures. Moreover, the content presents further discussions related to some national and international recommendations, such as potential exposure, which is currently one of the most important research fields in radiological protection. Only two publications of ICRP develop expressively the issue and there is still a lack of knowledge of fail probabilities, for there are still uncertainties to find effective paths to quantify probabilistically the occurrence of potential exposures and the probabilities to reach a certain level of dose. To respond to this challenge, this project discusses and introduces potential exposures in a more quantitative way than national and international recommendations. Articulating ICRP and AIEA valid recommendations and official reports, in addition to scientific papers published in major international congresses, the website discusses and suggests a number of effective actions towards safety which can be incorporated into labor practice. The WEB platform was created according to corporate public needs, taking into account the development of a robust but flexible system, which can be easily adapted to future demands. ICTs provide a vast array of new communication capabilities and allow to spread information to as many people as possible at low costs and high quality communication. This initiative shall provide opportunities for employees to increase professional skills, stimulating development in this large country where it is an enormous challenge to ensure effective and updated information to geographically distant facilities, minimizing costs and optimizing results.

Keywords: distance learning, information and communication technology, nuclear science, radioactive facilities

Procedia PDF Downloads 173
212 Temporal Delays along the Neurosurgical Care Continuum for Traumatic Brain Injury Patients in Mulago Hospital in Kampala Uganda

Authors: Silvia D. Vaca, Benjamin J. Kuo, Joao Ricardo N. Vissoci, Catherine A. Staton, Linda W. Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: While delays to care exist in resource rich settings, greater delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of traumatic brain injury (TBI) in Sub Saharan Africa (SSA). While many LMICs have government subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold. First, due to a lack of a functional CT scanner at the tertiary hospital, patients need to arrange their own transportation to the nearby private facility for CT scans. Second, self-financing for the private CT scans ranges from $80 - $130, which is near the average monthly income in Kampala. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified ‘three delays’ framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 320
211 Cost-Conscious Treatment of Basal Cell Carcinoma

Authors: Palak V. Patel, Jessica Pixley, Steven R. Feldman

Abstract:

Introduction: Basal cell carcinoma (BCC) is the most common skin cancer worldwide and requires substantial resources to treat. When choosing between indicated therapies, providers consider their associated adverse effects, efficacy, cosmesis, and function preservation. The patient’s tumor burden, infiltrative risk, and risk of tumor recurrence are also considered. Treatment cost is often left out of these discussions. This can lead to financial toxicity, which describes the harm and quality of life reductions inflicted by high care costs. Methods: We studied the guidelines set forth by the American Academy of Dermatology for the treatment of BCC. A PubMed literature search was conducted to identify the costs of each recommended therapy. We discuss costs alongside treatment efficacy and side-effect profile. Results: Surgical treatment for BCC can be cost-effective if the appropriate treatment is selected for the presenting tumor. Curettage and electrodesiccation can be used in low-grade, low-recurrence tumors in aesthetically unimportant areas. The benefits of cost-conscious care are not likely to be outweighed by the risks of poor cosmesis or tumor return ($471 BCC of the cheek). When tumor burden is limited, MMS offers better cure rates and lower recurrence rates than surgical excision, and with comparable costs (MMS $1263; SE $949). Surgical excision with permanent sections may be indicated when tumor burden is more extensive or if molecular testing is necessary. The utility of surgical excision with frozen sections, which costs substantially more than MMS without comparable outcomes, is less clear (SE with frozen sections $2334-$3085). Less data exists on non-surgical treatments for BCC. These techniques cost less, but recurrence-risk is high. Side-effects of nonsurgical treatment are limited to local skin reactions, and cosmesis is good. Cryotherapy, 5-FU, and MAL-PDT are all more affordable than surgery, but high recurrence rates increase risk of secondary financial and psychosocial burden (recurrence rates 21-39%; cost $100-270). Radiation therapy offers better clearance rates than other nonsurgical treatments but is associated with similar recurrence rates and a significantly larger financial burden ($2591-$3460 BCC of the cheek). Treatments for advanced or metastatic BCC are extremely costly, but few patients require their use, and the societal cost burden remains low. Vismodegib and sonidegib have good response rates but substantial side effects, and therapy should be combined with multidisciplinary care and palliative measures. Expert-review has found sonidegib to be the less expensive and more efficacious option (vismodegib $128,358; sonidegib $122,579). Platinum therapy, while not FDA-approved, is also effective but expensive (~91,435). Immunotherapy offers a new line of treatment in patients intolerant of hedgehog inhibitors ($683,061). Conclusion: Dermatologists working within resource-compressed practices and with resource-limited patients must prudently manage the healthcare dollar. Surgical therapies for BCC offer the lowest risk of recurrence at the most reasonable cost. Non-surgical therapies are more affordable, but high recurrence rates increase the risk of secondary financial and psychosocial burdens. Treatments for advanced BCC are incredibly costly, but the low incidence means the overall cost to the system is low.

Keywords: nonmelanoma skin cancer, basal cell skin cancer, squamous cell skin cancer, cost of care

Procedia PDF Downloads 95
210 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 55
209 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process

Authors: Marek Vondra, Petr Bobák

Abstract:

Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.

Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation

Procedia PDF Downloads 366
208 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment

Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark

Abstract:

Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.

Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose

Procedia PDF Downloads 38
207 The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement

Authors: J. H. Boonzaaier, A. C. Brent

Abstract:

South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.

Keywords: institutional agent, water governance, polycentric water resource management, water resource management

Procedia PDF Downloads 115
206 The Effects of Goal Setting and Feedback on Inhibitory Performance

Authors: Mami Miyasaka, Kaichi Yanaoka

Abstract:

Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity; symptoms often manifest during childhood. In children with ADHD, the development of inhibitory processes is impaired. Inhibitory control allows people to avoid processing unnecessary stimuli and to behave appropriately in various situations; thus, people with ADHD require interventions to improve inhibitory control. Positive or negative reinforcements (i.e., reward or punishment) help improve the performance of children with such difficulties. However, in order to optimize impact, reward and punishment must be presented immediately following the relevant behavior. In regular elementary school classrooms, such supports are uncommon; hence, an alternative practical intervention method is required. One potential intervention involves setting goals to keep children motivated to perform tasks. This study examined whether goal setting improved inhibitory performances, especially for children with severe ADHD-related symptoms. We also focused on giving feedback on children's task performances. We expected that giving children feedback would help them set reasonable goals and monitor their performance. Feedback can be especially effective for children with severe ADHD-related symptoms because they have difficulty monitoring their own performance, perceiving their errors, and correcting their behavior. Our prediction was that goal setting by itself would be effective for children with mild ADHD-related symptoms, and goal setting based on feedback would be effective for children with severe ADHD-related symptoms. Japanese elementary school children and their parents were the sample for this study. Children performed two kinds of go/no-go tasks, and parents completed a checklist about their children's ADHD symptoms, the ADHD Rating Scale-IV, and the Conners 3rd edition. The go/no-go task is a cognitive task to measure inhibitory performance. Children were asked to press a key on the keyboard when a particular symbol appeared on the screen (go stimulus) and to refrain from doing so when another symbol was displayed (no-go stimulus). Errors obtained in response to a no-go stimulus indicated inhibitory impairment. To examine the effect of goal-setting on inhibitory control, 37 children (Mage = 9.49 ± 0.51) were required to set a performance goal, and 34 children (Mage = 9.44 ± 0.50) were not. Further, to manipulate the presence of feedback, in one go/no-go task, no information about children’s scores was provided; however, scores were revealed for the other type of go/no-go tasks. The results revealed a significant interaction between goal setting and feedback. However, three-way interaction between ADHD-related inattention, feedback, and goal setting was not significant. These results indicated that goal setting was effective for improving the performance of the go/no-go task only with feedback, regardless of ADHD severity. Furthermore, we found an interaction between ADHD-related inattention and feedback, indicating that informing inattentive children of their scores made them unexpectedly more impulsive. Taken together, giving feedback was, unexpectedly, too demanding for children with severe ADHD-related symptoms, but the combination of goal setting with feedback was effective for improving their inhibitory control. We discuss effective interventions for children with ADHD from the perspective of goal setting and feedback. This work was supported by the 14th Hakuho Research Grant for Child Education of the Hakuho Foundation.

Keywords: attention deficit disorder with hyperactivity, feedback, goal-setting, go/no-go task, inhibitory control

Procedia PDF Downloads 83
205 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing

Procedia PDF Downloads 66
204 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 51
203 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 216
202 Relationship between Glycated Hemoglobin in Adolescents with Type 1 Diabetes Mellitus and Parental Anxiety and Depression

Authors: Evija Silina, Maris Taube, Maksims Zolovs

Abstract:

Background: Type 1 diabetes mellitus (T1D) is the most common chronic endocrine pathology in children. The management of type 1 diabetes requires a strong diet, physical activity, lifelong insulin therapy, and proper self-monitoring of blood glucose and is usually complicated and, therefore, may result in a variety of psychosocial problems for children, adolescents, and their families. Metabolic control of the disease is determined by glycated haemoglobin (HbA1c), the main criterion for diabetes compensation. A correlation was observed between anxiety and depression levels and glycaemic control in many previous studies. It is assumed that anxiety and depression symptoms negatively affect glycaemic control. Parental psychological distress was associated with higher child self-report of stress and depressive symptoms, and it had negative effects on diabetes management. Objective: The main objective of this paper is to evaluate the relationship between parental mental health conditions (depression and anxiety) and metabolic control of their adolescents with T1DM. Methods: This cross-sectional study recruited adolescents with T1D (N=251) and their parents (N=251). The respondents completed questionnaires. The 7-item Generalized Anxiety Disorder (GAD-7) scale measured anxiety level; The Patient Health Questionnaire – 9 (PHQ-9) measured depressive symptoms. Glycaemic control of patients was assessed using the last glycated haemoglobin (HbA1c) values. GLM mediation analysis was performed to determine the potential mediating effect of the parent’s mental health conditions (depression and anxiety) on the relationship between the mental health conditions (depression and anxiety) of a child on the level of glycated hemoglobin (HbA1c). To test the significance of the mediated effect (ME) for non-normally distributed data, bootstrapping procedures (10,000 bootstrapped samples) were used. Results: 502 respondents were eligible for screening to detect anxiety and depression symptoms. Mediation analysis was performed to assess the mediating role of parent GAD-7 on the linkage between a dependent variable (HbA1c) and independent variables (child GAD-7 un child PHQ-9). The results revealed that the total effect of child GAD-7 (B = 0.479, z = 4.30, p < 0.001) on HbA1c was significant but the total effect of child PHQ-9 (B = 0.166, z = 1.49, p = 0.135) was not significant. With the inclusion of the mediating variable (parent GAD-7), the impact of child GAD-7 on HbA1c was found insignificant (B = 0.113, z=0.98, p = 0.326), the impact of child PHQ-9 on HbA1c was found also insignificant (B = 0.068, z=0.74, p = 0.458). The indirect effect of child GAD-7 on HbA1c through parent GAD-7 was found significant (B = 0.366, z = 4.31, p < 0.001) and the indirect effect of child PHQ-9 on HbA1c through parent GAD-7 was found also significant (B = 0.098, z = 2.56, p = 0.010). This indicates that the relationship between a dependent variable (HbA1c) and independent variables (child GAD-7 un child PHQ-9) is fully mediated by parent GAD-7. Conclusion: The main result suggests that glycated haemoglobin in adolescents with Type 1 diabetes is related to adolescents’ mental health via parents’ anxiety. It means that parents’ anxiety plays a more significant role in the level of glycated haemoglobin in adolescents than depression and anxiety in the adolescent.

Keywords: type 1 diabetes, adolescents, parental diabetes-specific mental health conditions, glycated haemoglobin, anxiety, depression

Procedia PDF Downloads 57
201 Combating the Practice of Open Defecation through Appropriate Communication Strategies in Rural India

Authors: Santiagomani Alex Parimalam

Abstract:

Lack of awareness on the consequences of open defecation and myths and misconceptions related to use of toilets have led to the continued practice of open defecation in India. Government of India initiated a multi-pronged intensive communication campaign against the practice of open defecation in the last few years. The primary vision of this communication campaign was to provide increased demand for toilets and to ensure that all have access to safe sanitation. The campaign strategy included the use of mass media, group and folk media, and interpersonal communication to expedite achieving its objectives. The campaign included the use of various media such as posters, wall writings, slides in cinema theatres, kiosks, pamphlets, newsletters, flip charts and folk media to bring behavioural changes in the communities. The author did a concurrent monitoring and process documentation of the campaigns initiated by the state of Tamilnandu, India between 2013 and 2016 commissioned by UNICEF India. The study was carried out to assess the effectiveness of the communication campaigns in combating the practice of open defecation and promote construction of toilets in the state of Tamilnadu, India. Initial findings revealed the gap in understanding the audience and the use of appropriate media. The first phase of the communication campaign by name as Chi Chi Chollapa (bringing shame concept) also revealed that use of interpersonal communication, group and community media were the most effective strategy in reaching the rural masses. The failure of various other media used especially the print media (poster, handbills, newsletter, kiosks) provides insights as to where the government needs to invest its resources in bringing health-seeking behaviour in the community. The findings shared with the government enabled to strengthen the campaign resulting in improved response. Taking cues from the study, the government understood the potency of the women, school children, youth and community leaders as the effective carriers of the message. The government narrowed down its focus and invested on the voluntary workers (village poverty reduction committee workers VPRCs) in the community. The effectiveness of interpersonal communication and peer education by the credible community worker threw light on the need for localising the content and communicator. From this study, we could derive that only community and group media are preferred by the people in the rural community. Children, youth, women, and credible local leaders are proved to be ambassadors in behaviour change communication. This study discloses the lacunae involved in the communication campaign and points out that the state should have carried out a proper communication need analysis and piloting. The study used a survey method with random sampling. The study used both quantitative and qualitative tools such as interview schedules, in-depth interviews, and focus group discussions in rural areas of Tamilnadu in phases. The findings of the study would provide directions to future campaigns to any campaign concerning health and rural development.

Keywords: appropriate, communication, combating, open defecation

Procedia PDF Downloads 103
200 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) allows machines to interpret information and learn from context analysis, giving them the ability to make predictions adjusted to each specific situation. In addition to learning by performing deterministic and probabilistic calculations, the 'artificial brain' also learns through information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) that provides users with useful suggestions, namely to pursue the following operations: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time the bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed in a pilot project. Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of this information is materialised in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" that players can use during the Game. Each participant in the Virtual Assisted-BIGAMES permanently asks himself about the decisions he should make during the game in order to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, and as the participants gain a better understanding of the game, they will more easily dispense with the VA's recommendations and rely more on their own experience, capability, and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator (Serious Game Controller) is responsible for supporting the players with further analysis and the recommended action may be (or not) aligned with the previous recommendations of the VA. All the information should be jointly analysed and assessed by each player, who are expected to add “Emotional Intelligence”, a component absent from the machine learning process.

Keywords: artificial intelligence (AI), gamification, key performance indicators (KPI), machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 77
199 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning

Authors: Chia Wei Lim, Ning Yan

Abstract:

The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.

Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning

Procedia PDF Downloads 72
198 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 97
197 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 135