Search results for: wheel flat
336 Investigation of Building Loads Effect on the Stability of Slope
Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud
Abstract:
In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.Keywords: isolated footings, multi-storeys building, PLAXIS 2D, slope
Procedia PDF Downloads 252335 Bekaadendang: A Principles-Focused Evaluation
Authors: Erin Brands-Saliba
Abstract:
In this evaluation study, we explore the efficacy and implementation of the five guiding principles of Bekaadendang “Being Peaceful,” a suite of services facilitated by our Anti-Human Trafficking Team, and a pivotal component of the Holistic Prevention Services department at NCFST. The guiding principles—trauma-informed care, cultural safety, 4-quadrant medicine wheel approach, harm reduction, and after-care peer support—are the foundation of Bekaadendang's mission to support at-risk individuals and survivors of human trafficking. This evaluation is of paramount importance given the profound impact of human trafficking on these communities and aims to ensure that Bekaadendang's principles are not only understood by staff but experienced by community members in a purposeful and meaningful manner. The issues at the heart of this evaluation are deeply entrenched in the historical and contemporary challenges faced by Indigenous communities, with a particular emphasis on Indigenous women and 2SLGBTQQIA+ individuals. Well-documented reports like the National Inquiry into Missing and Murdered Indigenous Women and Girls (MMIWG) have cast a glaring light on the disproportionately high rates of violence, exploitation, and trafficking experienced by these communities. The MMIWG report underlines the pressing need for holistic, culturally informed interventions like Bekaadendang. Furthermore, the research efforts of scholars, both Indigenous and non-Indigenous, shed light on the persistent systemic issues that make Indigenous individuals more vulnerable to trafficking and exploitation. Recognizing this broader context is crucial to truly grasp the importance of evaluating the guiding principles that underpin Bekaadendang's service model.Keywords: human trafficking, indigenous healing, MMIWG, program evaluation
Procedia PDF Downloads 50334 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges
Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini
Abstract:
Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity
Procedia PDF Downloads 340333 Design and Modeling of Light Duty Trencher
Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu
Abstract:
From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.Keywords: hydraulics, modelling, trenching, ditch
Procedia PDF Downloads 215332 Essential Oils of Polygonum L. Plants Growing in Kazakhstan and Their Antibacterial and Antifungal Activity
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
Bioactive substances of plant origin can be one of the advanced means of solution to the issue of combined therapy to inflammation. The main advantages of medical plants are softness and width of their therapeutic effect on an organism, the absence of side effects and complications even if the used continuously, high tolerability by patients. Moreover, medial plants are often the only and (or) cost-effective sources of natural biologically active substances and medicines. Along with other biologically active groups of chemical compounds, essential oils with wide range of pharmacological effects became very ingrained in medical practice. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Polygonum L. plants using Clevenger apparatus. Qualitative composition of essential oils was analyzed by chromatography-mass-spectrometry method using Agilent 6890N apparatus. The qualitative analysis is based on the comparison of retention time and full mass-spectra with respective data on components of reference oils and pure compounds, if there were any, and with the data of libraries of mass-spectra Wiley 7th edition and NIST 02. The main components of essential oil are for: Polygonum amphibium L. - γ-terpinene, borneol, piperitol, 1,8-cyneole, α-pinene, linalool, terpinolene and sabinene; Polygonum minus Huds. Fl. Angl. – linalool, terpinolene, camphene, borneol, 1,8-cyneole, α-pinene, 4-terpineol and 1-octen-3-ol; Polygonum alpinum All. – camphene, sabinene, 1-octen-3-ol, 4-carene, p- and o-cymol, γ-terpinene, borneol, -terpineol; Polygonum persicaria L. - α-pinene, sabinene, -terpinene, 4-carene, 1,8-cyneole, borneol, 4-terpineol. Antibacterial activity was researched relating to strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus agalacticae, relating to gram-negative strain Escherichia coli and to yeast fungus Сandida albicans using agar diffusion method. The medicines of comparison were gentamicin for bacteria and nystatin for yeast fungus Сandida albicans. It has been shown that Polygonum L. essential oils has moderate antibacterial effect to gram-positive microorganisms and weak antifungal activity to Candida albicans yeast fungus. At the second stage of our researches wound healing properties of ointment form of 3% essential oil was researched on the model of flat dermal wounds. To assess the influence of essential oil on healing processes the model of flat dermal wound. The speed of wound healing on rats of different groups was judged based on assessment the area of a wound from time to time. During research of wound healing properties disturbance of integral in neither group: general condition and behavior of animals, food intake, and excretion. Wound healing action of 3% ointment on base of Polygonum L. essential oil and polyethyleneglycol is comparable with the action of reference substances. As more favorable healing dynamics was observed in the experimental group than in control group, the tested ointment can be deemed more promising for further detailed study as wound healing means.Keywords: antibacterial, antifungal, bioactive substances, essential oils, isolation, Polygonum L.
Procedia PDF Downloads 532331 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 278330 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique
Authors: Navajyoti Panda, R. S. Pawar
Abstract:
In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.Keywords: bending, spring-back, v-bending, FEM, Taguchi, HSLA 420 and St12 materials, HyperForm, profile projector
Procedia PDF Downloads 189329 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.Keywords: bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse
Procedia PDF Downloads 167328 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method
Authors: S. Nandal, R. Bhargava
Abstract:
The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure
Procedia PDF Downloads 158327 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow
Procedia PDF Downloads 287326 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors
Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li
Abstract:
Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.Keywords: cross v-shape, performance, solar air collector, thermal efficiency
Procedia PDF Downloads 313325 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency
Procedia PDF Downloads 405324 Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine
Authors: Saci Abdelhakim Ferkous, Khedoudja Soudani, Smail Haddadi
Abstract:
This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits.Keywords: skid resistance, olive mill waste, polishing resistance, accelerated polishing machine, local materials, sustainable development.
Procedia PDF Downloads 56323 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics
Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu
Abstract:
In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties
Procedia PDF Downloads 323322 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent
Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi
Abstract:
An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration
Procedia PDF Downloads 470321 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 543320 Micro-Cantilever Tests on Hydride Blister and Zirconium Matrix of Zircaloy-4 Cladding Tube
Authors: Ho-A Kim, Jae-Soo Noh
Abstract:
During reactor operation, hydride blister can occur in spent nuclear fuel (SNF) claddings, and it could worsen the integrity of the claddings locally. Hydride blister can be critical when a pinch-type load is applied in the process of SNF handling and transportation. Micro-cantilever tests were performed to evaluate the risk of local hydride blister by comparing the fracture toughness of local hydride blister and pre-hydrided Zr alloy matrix of SNF cladding on a microscale. Hydride blister was generated by a gaseous charging procedure to simulate an SNF cladding. Micro-cantilevers and pre-cracks were ion-milled with the Ga+ ion beam of FEI Helios 600 at 30kV acceleration voltage. Micro-cantilever tests were conducted using PI 85 pico-indenter (HYSTRON) with for sided conductive diamond flat tip (1 μm x 1 μm) at a speed of 5 nm/sec. The results show that the hydride blister specimen could be fractured in the elastic deformation region, and the fracture toughness of the hydride blister specimen could drop up to 60% of that of the pre-hydrided Zr alloy matrix. Therefore, local hydride blister can degrade the integrity of SNF cladding, and the effect of hydride blister should be taken into account when evaluating failure criteria of claddings during handling, storage, and transportation of SNF.Keywords: fracture toughness, hydride blister, micro-cantilever test, spent nuclear fuel cladding.
Procedia PDF Downloads 137319 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition
Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya
Abstract:
The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method
Procedia PDF Downloads 279318 Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage
Authors: Sabrina Boutaleb, Kouider Halim Benrahou, François Schosseler, Abdelouahed Tounsi, El Abbas Adda Bedia
Abstract:
The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results.Keywords: COAPUR 6050, flow’s couette, polyurethane, rheological behaviours
Procedia PDF Downloads 501317 Recognition of a Stacked Wave-Tide Dominated Fluvio-Marine Depositional System in an Ancient Rock Record, Proterozoic Simla Group, Lesser Himalaya, India
Authors: Ananya Mukhopadhyay, Priyanka Mazumdar, Tithi Banerjee, Alono Thorie
Abstract:
Outcrop-based facies analysis of the Proterozoic rock successions in the Simla Basin, Lesser Himalaya was combined with the application of sequence stratigraphy to delineate the stages of wave-tide dominated fluvio-marine depositional system development. On this basis, a vertical profile depositional model has been developed. Based on lateral and vertical facies transitions, twenty lithofacies have been delineated from the lower-middle-upper part of the Simla Group, which are categorized into four major facies (FA1, FA2, FA3 and FA4) belts. FA1 documented from the Basantpur Formation (lower part of the Simla Group) indicates evolution of a distally steepened carbonate ramp deposits) highly influenced by sea level fluctuations, where outer, mid and inner ramp sub environments were identified. This transition from inner-mid to outer ramp is marked by a distinct slope break that has been widely cited as an example of a distally steepened ramp. The Basantpur carbonate ramp represents two different systems tracts: TST and HST which developed at different stages of sea level fluctuations. FA2 manifested from the Kunihar Formation (uncorformably overlying the Basantpur Formation) indicates deposition in a rimmed shelf (rich in microbial activity) sub-environment and bears the signature of an HST. FA3 delineated from the Chhaosa Formation (unconformably overlying the Kunihar mixed siliciclastic carbonates, middle part of the Simla Group) provides an excellent example of tide- and wave influenced deltaic deposit (FA3) which is characterized by wave dominated shorefacies deposit in the lower part, sharply overlain by fluvio-tidal channel and/or estuarine bay successions in the middle part followed by a tide dominated muddy tidal flat in the upper part. Despite large-scale progradation, the Chhaosa deltaic deposits are volumetrically dominated by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units which are characterized by muddy tidal flat deposit. The Sanjauli Formation (upper part of the Simla Basin) records a major marine regression leading to the shifting of the shoreline basinward thereby resulting in fluvial incision on the top of the Chhaosa deltaic succession. The development of a braided fluvial system (FA4) with prominent fluvial incision is marked by presence of conglomerate-sandstone facies associations. Prominent fluvial incision on top of the delta deposits indicates the presence of sub-aerial TYPE 1 unconformity. The fluvial deposits mark the closure of sedimentation in the Simla basin that evolved during high frequency periods of coastal progradation and retrogradation. Each of the depositional cycles represents shoreline regression followed by transgression which is bounded by flooding surfaces and further followed by regression. The proposed depositional model in the present work deals with lateral facies variation due to shift in shore line along with fluctuations in accommodation space on a wave-tide influenced depositional system owing to fluctuations of sea level. This model will probably find its applicability in similar depositional setups.Keywords: proterozoic, carbonate ramp, tide dominated delta, braided fluvial system, TYPE 1 unconformity
Procedia PDF Downloads 251316 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach
Authors: Sifeddine Abderrahmani, Sonia Bouafia
Abstract:
The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element
Procedia PDF Downloads 99315 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 67314 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 407313 A New Design of Vacuum Membrane Distillation Module for Water Desalination
Authors: Adnan Alhathal Alanezi
Abstract:
The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module
Procedia PDF Downloads 89312 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness
Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem
Abstract:
Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow
Procedia PDF Downloads 541311 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.Keywords: congestion pricing, demand management, flat toll, variable toll
Procedia PDF Downloads 390310 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion
Authors: Bharti Saini, Sukanta K. Dash
Abstract:
In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.Keywords: membrane, phase inversion method, polysulfone, porous structure
Procedia PDF Downloads 235309 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: active thermography, composite, curved structures, defects
Procedia PDF Downloads 319308 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements
Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang
Abstract:
Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation
Procedia PDF Downloads 144307 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter
Authors: Muogbo Chukwudi Peter, Gbabo Agidi
Abstract:
Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter
Procedia PDF Downloads 62