Search results for: pressure fed journal bearing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5002

Search results for: pressure fed journal bearing

4612 Use of High Hydrostatic Pressure as an Alternative Preservation Method in Camels Milk

Authors: Fahad Aljasass, Hamza Abu-Tarboush, Salah Aleid, Siddig Hamad

Abstract:

The effects of different high hydrostatic pressure treatments on the shelf life of camel’s milk were studied. Treatments at 300 to 350 MPa for 5 minutes at 40°C reduced microbial contamination to levels that prolonged the shelf life of refrigerated (3° C) milk up to 28 days. The treatment resulted in a decrease in the proteolytic activity of the milk. The content of proteolytic enzymes in the untreated milk sample was 4.23 µM/ml. This content decreased significantly to 3.61 µM/ml when the sample was treated at 250 MPa. Treatment at 300 MPa decreased the content to 3.90 which was not significantly different from the content of the untreated sample. The content of the sample treated at 350 MPa dropped to 2.98 µM/ml which was significantly lower than the contents of all other treated and untreated samples. High pressure treatment caused a slight but statistically significant increase in the pH of camel’s milk. The pH of the untreated sample was 6.63, which increased significantly to 6.70, in the samples treated at 250 and 350 MPa, but insignificantly in the sample treated at 300 MPa. High pressure treatment resulted in some degree of milk fat oxidation. The thiobarbituric acid (TBA) value of the untreated sample was 0.86 mg malonaldehyde/kg milk. This value remained unchanged in the sample treated at 250 MPa, but then it increased significantly to 1.25 and 1.33 mg/kg in the samples treated at 300 and 350 MPa, respectively. High pressure treatment caused a small increase in the greenness (a* value) of camel’s milk. The value of a* was reduced from -1.17 for the untreated sample to -1.26, -1.21 and -1.30 for the samples treated at 250, 300 and 350 MPa, respectively. Δa* at the 250 MPa treatment was -0.09, which then decreased to -0.04 at the 300 MPa treatment to increase again to -0.13 at the 350 MPa treatment. The yellowness (b* value) of camel’s milk increased significantly as a result of high pressure treatment. The b* value of the untreated sample was 1.40, this value increased to 2.73, 2.31 and 2.18 after treatments at 250, 300 and 350 MPa, respectively. The Δb* value was +1.33 at the treatment 250 MPa, decreased to +0.91 at 300 MPa and further to +0.78 at 350 MPa. The pressure treatment caused slight effect on color, slight decrease in protease activity and a slight increase in the oxidation products of lipids.

Keywords: high hydrostatic pressure, camel’s milk, mesophilic aerobic bacteria, clotting, protease

Procedia PDF Downloads 263
4611 Effects of Handgrip Isometric Training in Blood Pressure of Patients with Peripheral Artery Disease

Authors: Raphael M. Ritti-Dias, Marilia A. Correia, Wagner J. R. Domingues, Aline C. Palmeira, Paulo Longano, Nelson Wolosker, Lauro C. Vianna, Gabriel G. Cucato

Abstract:

Patients with peripheral arterial disease (PAD) have a high prevalence of hypertension, which contributes to a high risk of acute cardiovascular events and cardiovascular mortality. Strategies to reduce cardiovascular risk of these patients are needed. Meta-analysis studies have shown that isometric handgrip training promotes reductions in clinical blood pressure in normotensive, pre-hypertensive and hypertensive individuals. However, the effect of this exercise training on other cardiovascular function indicators in PAD patients remains unknown. Thus, the aim of this study was to analyze the effects of isometric handgrip training on blood pressure in patients with PAD. In this clinical trial, 28 patients were randomly allocated into two groups: isometric handgrip training (HG) and control (CG). The HG conducted the unilateral handgrip training three days per week (four sets of two minutes, with 30% of maximum voluntary contraction with an interval of four minutes between sets). CG was encouraged to increase their physical activity levels. At baseline and after eight weeks blood pressure and heart rate were obtained. ANOVA two-way for repeated measures with the group (GH and GC) and time (pre- and post-intervention) as factors was performed. After 8 weeks of training there were no significant changes in systolic blood pressure (HG pre 141 ± 24.0 mmHg vs. HG post 142 ± 22.0 mmHg; CG pre 140 ± 22.1 mmHg vs. CG post 146 ± 16.2 mmHg; P=0.18), diastolic blood pressure (HG pre 74 ± 10.4 mmHg vs. HG post 74 ± 11.9 mmHg; CG pre 72 ± 6.9 mmHg vs. CG post 74 ± 8.0 mmHg; P=0.22) and heart rate (HG pre 61 ± 10.5 bpm vs. HG post 62 ± 8.0 bpm; CG pre 64 ± 11.8 bpm vs. CG post 65 ± 13.6 bpm; P=0.81). In conclusion, our preliminary data indicate that isometric handgrip training did not modify blood pressure and heart rate in patients with PAD.

Keywords: blood pressure, exercise, isometric, peripheral artery disease

Procedia PDF Downloads 327
4610 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand

Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed

Abstract:

The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.

Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus

Procedia PDF Downloads 148
4609 X-Bracing Configuration and Seismic Response

Authors: Saeed Rahjoo, Babak H. Mamaqani

Abstract:

Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary.

Keywords: bracing configuration, concentrically braced frame (CBF), push over analyses, response reduction factor

Procedia PDF Downloads 347
4608 Simulation of Turboexpander Potential in a City Gate Station under Variations of Feed Characteristic

Authors: Tarannom Parhizkar, Halle Bakhteeyar

Abstract:

This paper presents a feasibility assessment of an expansion system applied to the natural gas transportation process in Iran. Power can be generated from the pressure energy of natural gas along its supply chain at various pressure reduction points by using turboexpanders. This technology is being applied in different countries around the world. The system consists of a turboexpander reducing the natural gas pressure and providing mechanical energy to drive electric generator. Moreover, gas pre-heating, required to prevent hydrate formation, is performed upstream of expansion stage using burner. The city gate station (CGS) has a nominal flow rate in range of 45000 to 270000 cubic meters per hour and a pressure reduction from maximum 62 bar at the upstream to 6 bar. Due to variable feed pressure and temperature in this station sensitivity analysis of generated electricity and required heat is performed. Results show that plant gain is more sensible to pressure variation than temperature changes. Furthermore, using turboexpander to reduce the pressure result in an electrical generation of 2757 to 17574 kW with the value of approximately 4 million US$ per year. Moreover, the required heat range to prevent a hydrate formation is almost 2189 to 14157 kW. To provide this heat, a burner is used with a maximum annual cost of 268,640 $ burner fuel. Therefore, the actual annual benefit of proposed plant modification is approximately over 6,5 million US$.

Keywords: feasibility study, simulation, turboexpander, feed characteristic

Procedia PDF Downloads 495
4607 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 261
4606 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 283
4605 Experimental Studies and CFD Predictions on Hydrodynamics of Gas-Solid Flow in an ICFB with a Draft Tube

Authors: Ravi Gujjula, Chinna Eranna, Narasimha Mangadoddy

Abstract:

Hydrodynamic study of gas and solid flow in an internally circulating fluidized bed with draft tube is made in this paper using high speed camera and pressure probes for the laboratory ICFB test rig 3.0 m X 2.7 m column having a draft tube located in the center of ICFB. Experiments were conducted using different sized sand particles with varying particle size distribution. At each experimental run the standard pressure-flow curves for both draft tube and annular region beds measured and the same time downward particles velocity in the annular bed region were also measured. The effect of superficial gas velocity, static bed height (40, 50 & 60 cm) and the draft tube gap height (10.5 & 14.5 cm) on pressure drop profiles, solid circulation pattern, and gas bypassing dynamics for the ICFB investigated extensively. The mechanism of governing solid recirculation and the pressure losses in an ICFB has been eluded based on gas and solid dynamics obtained from the experimental data. 3D ICFB CFD simulation runs conducted and extracted data validated with ICFB experimental data.

Keywords: icfb, cfd, pressure drop, solids recirculation, bed height, draft tube

Procedia PDF Downloads 514
4604 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature

Authors: Shao Qi

Abstract:

The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.

Keywords: research trends, visual analysis, habitat creation, ecological restoration

Procedia PDF Downloads 58
4603 Comparison of Intraocular Pressure Measurement Prior and Following Full Intracorneal Ring Implantation in Patient with Keratoconus by Three Different Instruments

Authors: Seyed Aliasghar Mosavi, Mostafa Naderi, Khosrow Jadidi, Amir Hashem Mohammadi

Abstract:

To study the measurement of intraocular pressure (IOP) before and after implantation of intrastromal corneal ring (MyoRing) in patients with keratoconus. Setting: Baqiyatallah University of Medical Sciences, Tehran, Iran. Methods: We compared the IOP of 13 eyes which underwent MyoRing implantation prior and six months post operation using Goldman applanation (as gold standard), Icare, and Corvis ST (uncorrected, corrected and corrected with cornea biomechanics). Results: The resulting intraocular pressure measurements prior to surgery, Icare, Corvis (corrected with cornea biomechanics) overestimated the IOP, however measurements by Corvis uncorrected underestimate the IOP. The resulting intraocular pressure measurements after surgery, Icare, Corvis (corrected with cornea biomechanics) overestimated the IOP but measurements by Corvis uncorrected underestimate the IOP. Conclusion: Consistent intraocular pressure measurements on eyes with Myoring in keratoconus can be obtained with the Goldman applanation tonometer as the gold standard measurement. We were not able to obtain consistent results when we measured the IOP by Icare and Corvis prior and after surgery.

Keywords: intraocular pressure, MyoRing, Keratoconus, Goldmann applanation, Icare, Corvis ST

Procedia PDF Downloads 240
4602 Modelling of Creep in a Thick-Walled Cylindrical Vessel Subjected to Internal Pressure

Authors: Tejeet Singh, Ishvneet Singh, Vinay Gupta

Abstract:

The present study focussed on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminium matrix reinforced with silicon-carbide in particulate form. The creep behaviour of the composite material has been described by the threshold stress based creep law. The value of stress exponent appearing in the creep law was selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stresses and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: creep, composite, cylindrical vessel, internal pressure

Procedia PDF Downloads 572
4601 High Viscous Oil–Water Flow: Experiments and CFD Simulations

Authors: A. Archibong-Eso, J. Shi, Y Baba, S. Alagbe, W. Yan, H. Yeung

Abstract:

This study presents over 100 experiments conducted in a 25.4 mm internal diameter (ID) horizontal pipeline. Oil viscosity ranging from 3.5 Pa.s–5.0 Pa.s are used with superficial velocities of oil and water ranging from 0.06 to 0.55 m/s and 0.01 m/s to 1.0 m/s, respectively. Pressure gradient measurements and flow pattern observations are discussed. Numerical simulation of some flow conditions is performed using the commercial CFD code ANSYS Fluent® and the simulation results are compared with experimental results. Results indicate that CFD numerical simulation performed moderately well in predicting the flow configurations observed in this study while discrepancies were observed in the pressure gradient predictions.

Keywords: flow patterns, plug, pressure gradient, rivulet

Procedia PDF Downloads 422
4600 Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure.

Keywords: stone column, liquefaction, excess pore pressure, silt content, disturbed zone, reduced permeability

Procedia PDF Downloads 152
4599 Sustainability and Energy-Efficiency in Buildings: A review

Authors: Medya Fathi

Abstract:

Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.

Keywords: sustainability, energy performance, energy efficiency, buildings, review

Procedia PDF Downloads 66
4598 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing

Procedia PDF Downloads 397
4597 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 140
4596 The Development of Large Deformation Stability of Elastomeric Bearings

Authors: Davide Forcellini, James Marshal Kelly

Abstract:

Seismic isolation using multi-layer elastomeric isolators has been used in the United States for more than 20 years. Although isolation bearings normally have a large factor of safety against buckling due to low shear stiffness, this phenomenon has been widely studied. In particular, the linearly elastic theory adopted to study this phenomenon is relatively accurate and adequate for most design purposes. Unfortunately it cannot consider the large deformation response of a bearing when buckling occurs and the unresolved behaviour of the stability of the post-buckled state. The study conducted in this paper may be viewed as a development of the linear theory of multi-layered elastomeric bearing, simply replacing the differential equations by algebraic equations, showing how it is possible to evaluate the post-buckling behaviour and the interactions at large deformations.

Keywords: multi-layer elastomeric isolators, large deformation, compressive load, tensile load, post-buckling behaviour

Procedia PDF Downloads 431
4595 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20° to +20° using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: flow patterns, inclined two phase flow, pressure drop, void fraction

Procedia PDF Downloads 677
4594 Effects of Aerobic Dance Circuit Training Programme on Blood Pressure Variables of Obese Female College Students in Oyo State, Nigeria

Authors: Isiaka Oladele Oladipo, Olusegun Adewale Ajayi

Abstract:

The blood pressure fitness of female college students has been implicated in sedentary lifestyles. This study was designed to determine the effects of the Aerobic Dance Circuit Training Programme (ADCT) on blood pressure variables (Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). Participants’ Pretest-Posttest control group quasi-experimental design using a 2x2x4 factorial matrix was adopted, while one (1) research question and two (2) research hypotheses were formulated. Seventy (70) untrained obese students-volunteers age 21.10±2.46 years were purposively selected from Oyo town, Nigeria; Emmanuel Alayande College of Education (experimental group and Federal College of Education (special) control group. The participants’ BMI, weight (kg), height (m), systolic bp(mmHg), and diastolic bp (mmHg) were measured before and completion of ADCT. Data collected were analysed using a pie chart, graph, percentage, mean, frequency, and standard deviation, while a t-test was used to analyse the stated hypotheses set at the critical level of 0.05. There were significant mean differences in baseline and post-treatment values of blood pressure variables in terms of SBP among the experimental group 136.49mmHg and 131.66mmHg; control group 130.82mmHg and 130.56mmHg (crit-t=2.00, cal.t=3.02, df=69, p<.0, the hypothesis was rejected; while DBP experimental group 88.65mmHg and 82.21mmHg; control group 69.91mmHg and 72.66mmHg (crit-t=2.00, cal.t=1.437, df=69, p>.05) in which the hypothesis was accepted). It was revealed from the findings that participants’ SBP decrease from week 4 to week 12 of ADCT indicated an effective reduction in blood pressure variables of obese female students. Therefore, the study confirmed that the use of ADCT is safe and effective in the management of blood pressure for the healthy benefit of obesity.

Keywords: aerobic dance circuit training, fitness lifestyles, obese college female students, systolic blood pressure, diastolic blood pressure

Procedia PDF Downloads 68
4593 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 211
4592 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure

Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai

Abstract:

Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.

Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure

Procedia PDF Downloads 135
4591 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype

Authors: Tine Cencič, Marko Hočevar, Brane Širok

Abstract:

An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.

Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics

Procedia PDF Downloads 410
4590 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil

Procedia PDF Downloads 488
4589 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems

Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify

Abstract:

Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.

Keywords: natural gas, power recovery, reduction stations, turboexpander systems

Procedia PDF Downloads 317
4588 Experimental Study of Heat Transfer and Pressure Drop in Serpentine Channel Water Cooler Heat Sink

Authors: Hao Xiaohong, Wu Zongxiang, Chen Xuefeng

Abstract:

With the high power density and high integration of electronic devices, their heat flux has been increasing rapidly. Therefore, an effective cooling technology is essential for the reliability and efficient operation of electronic devices. Liquid cooling is studied increasingly widely for its higher heat transfer efficiency. Serpentine channels are superior in the augmentation of single-phase convective heat transfer because of their better channel velocity distribution. In this paper, eight different frame sizes water-cooled serpentine channel heat sinks are designed to study the heat transfer and pressure drop characteristics. With water as the working fluid, experiment setup is established and the results showed the effect of different channel width, fin thickness and number of channels on thermal resistance and pressure drop.

Keywords: heat transfer, experiment, serpentine heat sink, pressure drop

Procedia PDF Downloads 449
4587 Corporate Voluntary Greenhouse Gas Emission Reporting in United Kingdom: Insights from Institutional and Upper Echelons Theories

Authors: Lyton Chithambo

Abstract:

This paper reports the results of an investigation into the extent to which various stakeholder pressures influence voluntary disclosure of greenhouse-gas (GHG) emissions in the United Kingdom (UK). The study, which is grounded on institutional theory, also borrows from the insights of upper echelons theory and examines whether specific managerial (chief executive officer) characteristics explain and moderates various stakeholder pressures in explaining GHG voluntary disclosure. Data were obtained from the 2011 annual and sustainability reports of a sample of 216 UK companies on the FTSE350 index listed on the London Stock Exchange. Generally the results suggest that there is no substantial shareholder and employee pressure on a firm to disclose GHG information but there is significant positive pressure from the market status of a firm with those firms with more market share disclosing more GHG information. Consistent with the predictions of institutional theory, we found evidence that coercive pressure i.e. regulatory pressure and mimetic pressures emanating in some industries notably industrials and consumer services have a significant positive influence on firms’ GHG disclosure decisions. Besides, creditor pressure also had a significant negative relationship with GHG disclosure. While CEO age had a direct negative effect on GHG voluntary disclosure, its moderation effect on stakeholder pressure influence on GHG disclosure was only significant on regulatory pressure. The results have important implications for both policy makers and company boards strategizing to reign in their GHG emissions.

Keywords: greenhouse gases, voluntary disclosure, upper echelons theory, institution theory

Procedia PDF Downloads 229
4586 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure

Authors: Tejeet Singh, Ishavneet Singh

Abstract:

The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: steady state creep, composite, cylinder, pressure

Procedia PDF Downloads 411
4585 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 136
4584 Effect of Contaminants on the Behavior of Shallow Foundations

Authors: Ghazal Horiat, Alireza Hajiani Bushehrian

Abstract:

leakage of contamination from fuel or oil reservoirs can alter the geotechnical properties of the soil under their foundation and finally affect their performance in their service life. This article investigates the behavior of shallow foundations on the soil contaminated with diesel and kerosene using the Plaxis Tunnel3D V1.2 software. The information required for the numerical modeling in the paper was obtained from a similar experimental study. The present study seeks to compare the behavior of square foundations on sandy soil without contamination and the soil contaminated with different percentages of diesel and crude oil. The study was conducted on a small square foundation. The depth of the contamination was assumed constant, and the soil was evaluated with four different percentages of both contaminants. The results of analyses were plotted and assessed in the form of load-displacement curves for the foundation. The results indicate reduced bearing capacity of the foundation with the rise in the contamination percentage.

Keywords: bearing capacity, contaminated soils, shallow foundations, 3D numerical analysis

Procedia PDF Downloads 137
4583 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 82