Search results for: polyamidoamine generation 1 (PAMAM G1)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3418

Search results for: polyamidoamine generation 1 (PAMAM G1)

3028 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 49
3027 Viability Study of the Use of Solar Energy for Water Heating in Homes in Brazil

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The sun is an inexhaustible source and harnessing its potential both for heating and for power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on the planet, only indirectly, as it is responsible for virtually all other energy sources, such as: Generates the evaporation source of the water cycle, which allows the impoundment and the consequent generation of electricity (hydroelectricity); Winds are caused by large-scale atmospheric induction caused by solar radiation; Oil, coal and natural gas were generated from waste plants and animals that originally obtained the energy needed for its development of solar radiation. Thus, the idea of using solar energy for practical purposes for the benefit of man is not new, as it accompanies the story since the beginning of time, which means that the sun was always of utmost importance in the design of shelters, or homes is, constructed by taking into consideration the use of sunlight, practicing what was being lost through the centuries, until a time when the buildings started to be designed completely independent of the sun. However, the climatic rigors still needed to be fought, only artificially and today seen as unsustainable, with additional facilities fueled by energy consumption. This paper presents a study on the feasibility of using solar energy for heating water in homes, developing a simplified methodology covering the mode of operation of solar water heaters, solar potential existing alternative systems of Brazil, the international market, and barriers encountered.

Keywords: solar energy, solar heating, solar project, water heating

Procedia PDF Downloads 333
3026 The Knowledge, Attitude, and Practice About Health Information Technology Among First-Generation Muslim Immigrant Women in Atlanta City During the Pandemic

Authors: Awatef Ahmed Ben Ramadan, Aqsa Arshad

Abstract:

Background: There is a huge Muslim migration movement to North America and Europe for several reasons, primarily refuge from war areas and partly to search for better work and educational chances. There are always concerns regarding first-Generation Immigrant women's health and computer literacy, an adequate understanding of the health systems, and the use of the existing healthcare technology and services effectively and efficiently. Language proficiency level, preference for cultural and traditional remedies, socioeconomic factors, fear of stereotyping, limited accessibility to health services, and general unfamiliarity with the existing health services and resources are familiar variables among these women. Aims: The current study aims to assess the health and digital literacy of first-generation Muslim women in Atlanta city. Also, the study aims to examine how the COVID-19 pandemic has encouraged the use of health information technology and increased technology awareness among the targeted women. Methods: The study design is cross-sectional correlational research. The study will be conducted to produce preliminary results that the investigators want to have to supplement an NIH grant application about leveraging information technology to reduce the health inequalities amongst the first-generation immigrant Muslim women in Atlanta City. The investigators will collect the study data in two phases using different tools. Phase one was conducted in June 2022; the investigators used tools to measure health and digital literacy amongst 42 first-generation immigrant Muslim women. Phase two was conducted in November 2022; the investigators measured the Knowledge, Attitude, and Practice (KAP) of using health information technology such as telehealth from a sample of 45 first-generation Muslim immigrant women in Atlanta; in addition, the investigators measured how the current pandemic has affected their KAP to use telemedicine and telehealth services. Both phases' study participants were recruited using convenience sampling methodology. The investigators collected around 40 of 18 years old or older first-generation Muslim immigrant women for both study phases. The study excluded Immigrants who hold work visas and second-generation immigrants. Results: At the point of submitting this abstract, the investigators are still analyzing the study data to produce preliminary results to apply for an NIH grant entitled "Leveraging Health Information Technology (Health IT) to Address and Reduce Health Care Disparities (R01 Clinical Trial Optional)". This research will be the first step of a comprehensive research project to assess and measure health and digital literacy amongst a vulnerable community group. The targeted group might have different points of view from the U.S.-born inhabitants on how to: promote their health, gain healthy lifestyles and habits, screen for diseases, adhere to health treatment and follow-up plans, perceive the importance of using available and affordable technology to communicate with their providers and improve their health, and help in making serious decisions for their health. The investigators aim to develop an educational and instructional health mobile application considering the language and cultural factors that affect immigrants' ability to access different health and social support sources, know their health rights and obligations in their communities, and improve their health behavior and behavior lifestyles.

Keywords: first-generation immigrant Muslim women, telehealth, COVID-19 pandemic, health information technology, health and digital literacy

Procedia PDF Downloads 87
3025 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode

Procedia PDF Downloads 303
3024 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 448
3023 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir

Abstract:

Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.

Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh

Procedia PDF Downloads 237
3022 Born in Limbo, Living in Limbo and Probably Will Die in Limbo

Authors: Betty Chiyangwa

Abstract:

The subject of second-generation migrant youth is under-researched in the context of South Africa. Thus, their opinions and views have been marginalised in social science research. This paper addresses this gap by exploring the complexities of second-generation Mozambican migrant youth’s lived experiences in how they construct their identities and develop a sense of belonging in post-apartheid South Africa, specifically in Bushbuckridge. Bushbuckridge was among the earliest districts to accommodate Mozambican refugees to South Africa in the 1970s and remains associated with large numbers of Mozambicans. Drawing on Crenshaw’s (1989) intersectionality approach, the study contributes to knowledge on South-to-South migration by demonstrating how this approach is operationalised to understand the complex lived experiences of a disadvantaged group in life and possibly in death. In conceptualising the notion of identity among second-generation migrant youth, this paper explores the history and present of first and second-generation Mozambican migrants in South Africa to reveal how being born to migrant parents and raised in a hosting country poses life-long complications in one’s identity and sense of belonging. In the quest to form their identities and construct a sense of belonging, migrant youth employ precariously means to navigate the terrane. This is a case study informed by semi-structured interviews and narrative data gathered from 22 second-generation Mozambican migrant youth between 18 and 34 years who were born to at least one Mozambican parent living in Bushbuckridge and raised in South Africa. Views of two key informants from the South African Department of Home Affairs and the local tribal authority provided additional perspectives on second-generation migrant youth’s lived experiences in Bushbuckridge, which were explored thematically and narratively through Braun and Clarke’s (2012) six-step framework for analysing qualitative data. In exploring the interdependency and interconnectedness of social categories and social systems in Bushbuckridge, the findings revealed that participants’ experiences of identity formation and development of a sense of belonging were marginalised in complex, intersectional and precarious ways where they constantly (re)negotiated their daily experiences, which were largely shaped by their paradoxical migrant status in a host country. This study found that, in the quest for belonging, migrant youths were not a perfectly integrated category but evolved from almost daily lived experiences of creating a living that gave them an identity and a sense of belonging in South Africa. The majority of them shared feelings of living in limbo since childhood and fear of possibly dying in limbo with no clear (solid) sense of belonging to either South Africa or Mozambique. This study concludes that there is a strong association between feelings of identity, sense of belonging and levels of social integration. It recommends the development and adoption of a multilayer comprehensive model for understanding second-generation migrant youth identity and belonging in South Africa which encourages a collaborative effort among individual migrant youth, their family members, neighbours, society, and regional and national institutional structures for migrants to enhance and harness their capabilities and improve their wellbeing in South Africa.

Keywords: bushbuckridge, limbo, mozambican migrants, second-generation

Procedia PDF Downloads 70
3021 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.

Keywords: hybrid, marine current energy, tidal turbine, wave turbine

Procedia PDF Downloads 363
3020 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication

Procedia PDF Downloads 447
3019 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382
3018 Generation-Based Travel Decision Analysis in the Post-Pandemic Era

Authors: Hsuan Yu Lai, Hsuan Hsuan Chang

Abstract:

The consumer decision process steps through problems by weighing evidence, examining alternatives, and choosing a decision path. Currently, the COVID 19 made the tourism industry encounter a huge challenge and suffer the biggest amount of economic loss. It would be very important to reexamine the decision-making process model, especially after the pandemic, and consider the differences among different generations. The tourism industry has been significantly impacted by the global outbreak of COVID-19, but as the pandemic subsides, the sector is recovering. This study addresses the scarcity of research on travel decision-making patterns among generations in Taiwan. Specifically targeting individuals who frequently traveled abroad before the pandemic, the study explores differences in decision-making at different stages post-outbreak. So this study investigates differences in travel decision-making among individuals from different generations during/after the COVID-19 pandemic and examines the moderating effects of social media usage and individuals' perception of health risks. The study hypotheses are “there are significant differences in the decision-making process including travel motivation, information searching preferences, and criteria for decision-making” and that social-media usage and health-risk perception would moderate the results of the previous study hypothesis. The X, Y, and Z generations are defined and categorized based on a literature review. The survey collected data including their social-economic background, travel behaviors, motivations, considerations for destinations, travel information searching preferences, and decision-making criteria before/after the pandemic based on the reviews of previous studies. Data from 656 online questionnaires were collected between January to May 2023 and from Taiwanese travel consumers who used to travel at least one time abroad before Covid-19. SPSS is used to analyze the data with One-Way ANOVA and Two-Way ANOVA. The analysis includes demand perception, information gathering, alternative comparison, purchase behavior, and post-travel experience sharing. Social media influence and perception of health risks are examined as moderating factors. The findings show that before the pandemic, the Y Generation preferred natural environments, while the X Generation favored historical and cultural sites compared to the Z Generation. However, after the outbreak, the Z Generation displayed a significant preference for entertainment activities. This study contributes to understanding changes in travel decision-making patterns following COVID-19 and the influence of social media and health risks. The findings have practical implications for the tourism industry.

Keywords: consumer decision-making, generation study, health risk perception, post-pandemic era, social media

Procedia PDF Downloads 61
3017 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.

Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite

Procedia PDF Downloads 377
3016 Global and Diffuse Solar Radiation Studies over Seven Cities of Sindh, Pakistan for Power Generation

Authors: M. A. Ahmed, Sidra A. Shaik

Abstract:

Global and diffuse solar radiation on horizontal surface over seven cities of Sindh namely Karachi, Hyderabad, Chore, Padidan, Nawabshah, Rohri and Jacobabad were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization at Sindh province. The result obtained shows a variation of direct and diffuse component of solar radiation in summer and winter months in southern Sindh (50% direct and 50% diffuse for Karachi, and Hyderabad) where there is a large variation in direct and diffuse component of solar radiation in summer and winter months in northern region (80% direct and 20% diffuse for Rohri and Jacobabad). In southern Sindh, the contribution of diffuse solar radiation is higher during the monsoon months (July and August). The sky remains clear during September to June. In northern Sindh (Rohri and Jacobabad) the contribution of diffuse solar radiation is low even in monsoon months i,e in July and August. The Kt value for northern Sindh indicates a clear sky. In northern part of the Sindh percentage of diffuse radiation does not exceed more than 20%. The appearance of cloud is rare. From the point of view of power generation, the estimated values indicate that northern part of Sindh has high solar potential while the southern part has low solar potential.

Keywords: global and diffuse solar radiation, solar potential, Province of Sindh, solar radiation studies for power generation

Procedia PDF Downloads 319
3015 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 28
3014 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario

Authors: Pooja Verma, Sumana Ghosh

Abstract:

There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.

Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber

Procedia PDF Downloads 353
3013 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.

Keywords: binary trees, MC/DC, test case generation, nontrivial task

Procedia PDF Downloads 451
3012 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 196
3011 Coordinated Voltage Control in Radial Distribution System with Distributed Generators Using Sensitivity Analysis

Authors: Anubhav Shrivastava Shivarudraswamy, Bhat Lakshya

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed generation can address a large number of loads in a power line and hence has better efficiency over the conventional methods. However, there are certain drawbacks associated with it, an increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/- 5% of the base value even after the introduction of DGs. Three methods for regulation of voltage are discussed. A sensitivity based analysis is then carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis

Procedia PDF Downloads 660
3010 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: circular arc helical gear, contact problem, optimal center distance, piezoelectric sheet, power generation

Procedia PDF Downloads 167
3009 Artificial Intelligence and the Next Generation Journalistic Practice: Prospects, Issues and Challenges

Authors: Shola Abidemi Olabode

Abstract:

The technological revolution over the years has impacted journalistic practice. As a matter of fact, journalistic practice has evolved alongside technologies of every generation transforming news and reporting, entertainment, and politics. Alongside these developments, the emergence of new kinds of risks and harms associated with generative AI has become rife with implications for media and journalism. Despite their numerous benefits for research and development, generative AI technologies like ChatGPT introduce new practical, ethical, and regulatory complexities in the practice of media and journalism. This paper presents a preliminary overview of the new kinds of challenges and issues for journalism and media practice in the era of generative AI, the implications for Nigeria, and invites a consideration of methods to mitigate the evolving complexity. It draws mainly on desk-based research underscoring the literature in both developed and developing non-western contexts as a contribution to knowledge.

Keywords: AI, journalism, media, online harms

Procedia PDF Downloads 82
3008 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes

Procedia PDF Downloads 286
3007 A Review of In-Vehicle Network for Cloud Connected Vehicle

Authors: Hanbhin Ryu, Ilkwon Yun

Abstract:

Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.

Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network

Procedia PDF Downloads 480
3006 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 508
3005 Rewritten Oedipus Complex: Huo Datong’s Complex of Generation

Authors: Xinyu Chen

Abstract:

This article reviews Chinese psychoanalytic theorist, Dr. Huo Datong’s notion, the complex of generation, around which Huo conceptualizes a localized set to recapitulate the unconscious structure of Chinese people. Psychoanalysis underwent constant localization influenced by the socio-cultural milieu and endeavored by scholars receiving training backgrounds from different psychoanalytic schools. Dr. Huo Datong is one of the representatives with a Sino-French background of psychoanalytic training, whose enterprise has demonstrated psychoanalysis's cultural and ideological accommodability. Insufficient academic attention has been paid to this concept as the core of Huo’s re-framework. This notion is put forward by sharing a western psychoanalytic reading of Chinese mythologies to contour Chinese unconsciousness. Regarding Huo’s interpretation of the Chinese kinship network as the basis to propose an omnipotent symbolic mother rather than an Oedipal father, this article intends to review this notion in terms of its mythological root to evaluate the theoretical practicality.

Keywords: psychoanalysis, China, Huo Datong, mythology

Procedia PDF Downloads 253
3004 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: entropy, exergy, ammonia-water mixture, heat exchanger

Procedia PDF Downloads 399
3003 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 85
3002 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 553
3001 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units

Procedia PDF Downloads 158
3000 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 272
2999 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 137