Search results for: phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin
4592 Pregnancy Outcome in Pregnancy with Low Pregnancy-Associated Plasma Protein A in First Trimester
Authors: Sumi Manjipparambil Surendran, Subrata Majumdar
Abstract:
Aim: The aim of the study is to find out if low PAPP-A (Pregnancy-Associated Plasma Protein A) levels in the first trimester are associated with adverse obstetric outcome. Methods: A retrospective study was carried out on 114 singleton pregnancies having undergone combined test screening. Results: There is statistically significant increased incidence of low birth weight infants in the low PAPP-A group. However, significant association was not found in the incidence of pre-eclampsia, miscarriage, and placental abruption. Conclusion: Low PAPP-A in the first trimester is associated with fetal growth restriction. Recommendation: Women with low PAPP-A levels in first trimester pregnancy screening require consultant-led care and serial growth scans.Keywords: pregnancy, pregnancy-associated plasma protein A, PAPP-A, fetal growth restriction, trimester
Procedia PDF Downloads 1424591 Implementation of Active Recovery at Immediate, 12 and 24 Hours Post-Training in Young Soccer Players
Authors: C. Villamizar, M. Serrato
Abstract:
In the pursuit of athletic performance, the role of physical training which is determined by a number of charges or taxes on physiological stress and musculoskeletal systems of the human body generated by the intensity and duration is fundamental. Given the physical demands of these activities both training and competitive must take into account the optimal relationship with a straining process recovery post favoring the process of overcompensation which aims to facilitate the return and rising energy potential and protein synthesis also of different tissues. Allowing muscle function returns to baseline or pre-exercise states. If this recovery process is not performed or is not allowed in a proper way, will result in an increased state of fatigue. Active recovery, is one of the strategies implemented in the sport for a return to pre-exercise physiological states. However, there are some adverse assumptions regarding the negative effects, as is the possibility of increasing the degradation of muscle glycogen and thus delaying the synthesis thereof. For them, it is necessary to investigate what would be the effects generated application made at different times after the effort. The aim of this study was to determine the effects of active recovery post effort made at three different times: immediately, at 12 and 24 hours on biochemical markers creatine kinase in youth soccer player’s categories. A randomized controlled trial with allocation to three groups was performed: A. active recovery immediately after the effort; B. active recovery performed at 12 hours after the effort; C. active recovery made at 24 hours after the effort. This study included 27 subjects belonging to a Colombian soccer team of the second division. Vital signs, weight, height, BMI, the percentage of muscle mass, fat mass percentage, personal medical history, and family were valued. The velocity, explosive force and Creatin Kinase (CK) in blood were tested before and after interventions. SAFT 90 protocol (Soccer Field specific Aerobic Test) was applied to participants for generating fatigue. CK samples were taken one hour before the application of the fatigue test, one hour after the fatigue protocol and 48 of the initial CK sample. Mean age was 18.5 ± 1.1 years old. Improvements in jumping and speed recovery the 3 groups (p < 0.05), but no statistically significant differences between groups was observed after recuperation. In all participants, there was a significant increment of CK when applied SAFT 90 in all the groups (median 103.1-111.1). The CK measurement after 48 hours reflects a recovery in all groups, however the group C, a decline below baseline levels of -55.5 (-96.3 /-20.4) which is a significant find. Other research has shown that CK does not return quickly to their baseline, but our study shows that active recovery favors the clearance of CK and also to perform recovery 24 hours after the effort generates higher clearance of this biomarker.Keywords: active recuperation, creatine phosphokinase, post training, young soccer players
Procedia PDF Downloads 1604590 Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome
Authors: Bhavini Patel, Aslihan Ugun-Klusek, Ellen Billet
Abstract:
The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival.Keywords: monoamine oxidase, neurodegeneration, Parkinson's disease, proteasome
Procedia PDF Downloads 1354589 Genetic Polymorphism and Insilico Study Epitope Block 2 MSP1 Gene of Plasmodium falciparum Isolate Endemic Jayapura
Authors: Arsyam Mawardi, Sony Suhandono, Azzania Fibriani, Fifi Fitriyah Masduki
Abstract:
Malaria is an infectious disease caused by Plasmodium sp. This disease has a high prevalence in Indonesia, especially in Jayapura. The vaccine that is currently being developed has not been effective in overcoming malaria. This is due to the high polymorphism in the Plasmodium genome especially in areas that encode Plasmodium surface proteins. Merozoite Surface Protein 1 (MSP1) Plasmodium falciparum is a surface protein that plays a role in the invasion process in human erythrocytes through the interaction of Glycophorin A protein receptors and sialic acid in erythrocytes with Reticulocyte Binding Proteins (RBP) and Duffy Adhesion Protein (DAP) ligands in merozoites. MSP1 can be targeted to be a specific antigen and predicted epitope area which will be used for the development of diagnostic and malaria vaccine therapy. MSP1 consists of 17 blocks, each block is dimorphic, and has been marked as the K1 and MAD20 alleles. Exceptions only in block 2, because it has 3 alleles, among others K1, MAD20 and RO33. These polymorphisms cause allelic variations and implicate the severity of patients infected P. falciparum. In addition, polymorphism of MSP1 in Jayapura isolates has not been reported so it is interesting to be further identified and projected as a specific antigen. Therefore, in this study, we analyzed the allele polymorphism as well as detected the MSP1 epitope antigen candidate on block 2 P. falciparum. Clinical samples of selected malaria patients followed the consecutive sampling method, examining malaria parasites with blood preparations on glass objects observed through a microscope. Plasmodium DNA was isolated from the blood of malarial positive patients. The block 2 MSP1 gene was amplified using PCR method and cloned using the pGEM-T easy vector then transformed to TOP'10 E.coli. Positive colonies selection was performed with blue-white screening. The existence of target DNA was confirmed by PCR colonies and DNA sequencing methods. Furthermore, DNA sequence analysis was done through alignment and formation of a phylogenetic tree using MEGA 6 software and insilico analysis using IEDB software to predict epitope candidate for P. falciparum. A total of 15 patient samples have been isolated from Plasmodium DNA. PCR amplification results show the target gene size about ± 1049 bp. The results of MSP1 nucleotide alignment analysis reveal that block 2 MSP1 genes derived from the sample of malarial patients were distributed in four different allele family groups, K1 (7), MAD20 (1), RO33 (0) and MSP1_Jayapura (10) alleles. The most commonly appears of the detected allele is MSP1_Jayapura single allele. There was no significant association between sex variables, age, the density of parasitemia and alel variation (Mann Whitney, U > 0.05), while symptomatic signs have a significant difference as a trigger of detectable allele variation (U < 0.05). In this research, insilico study shows that there is a new epitope antigen candidate from the MSP1_Jayapura allele and it is predicted to be recognized by B cells with 17 amino acid lengths in the amino acid sequence 187 to 203.Keywords: epitope candidate, insilico analysis, MSP1 P. falciparum, polymorphism
Procedia PDF Downloads 1804588 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma
Authors: Chang Liang, Weizhi Gong, Yan Zhang
Abstract:
Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination
Procedia PDF Downloads 1434587 Pupil Size: A Measure of Identification Memory in Target Present Lineups
Authors: Camilla Elphick, Graham Hole, Samuel Hutton, Graham Pike
Abstract:
Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures.Keywords: cognitive load, eyewitness identification, face recognition, pupillometry
Procedia PDF Downloads 4044586 Effects of the Natural Compound on SARS-CoV-2 Spike Protein-Mediated Metabolic Alteration in THP-1 Cells Explored by the ¹H-NMR-Based Metabolomics Approach
Authors: Gyaltsen Dakpa, K. J. Senthil Kumar, Nai-Wen Tsao, Sheng-Yang Wang
Abstract:
Context: Coronavirus disease 2019 (COVID-19) is a severe respiratory illness caused by the SARS-CoV-2 virus. One of the hallmarks of COVID-19 is a change in metabolism, which can lead to increased severity and mortality. The mechanism of SARS-CoV-2-mediated perturbations of metabolic pathways has yet to be fully understood. Research Aim: This study aimed to investigate the metabolic alteration caused by SARS-CoV-2 spike protein in Phorbol 12-myristate 13-acetate (PMA)-induced human monocytes (THP-1) and to examine the regulatory effect of natural compounds like Antcins A on SARS-CoV-2 spike protein-induced metabolic alteration. Methodology: The study used a combination of proton nuclear magnetic resonance (1H-NMR) and MetaboAnalyst 5.0 software. THP-1 cells were treated with SARS-CoV-2 spike protein or control, and the metabolomic profiles of the cells were compared. Antcin A was also added to the cells to assess its regulatory effect on SARS-CoV-2 spike protein-induced metabolic alteration. Findings: The study results showed that treatment with SARS-CoV-2 spike protein significantly altered the metabolomic profiles of THP-1 cells. Eight metabolites, including glycerol-phosphocholine, glycine, canadine, sarcosine, phosphoenolpyruvic acid, glutamine, glutamate, and N, N-dimethylglycine, were significantly different between control and spike-protein treatment groups. Antcin A significantly reversed the changes in these metabolites. In addition, treatment with antacid A significantly inhibited SARS-CoV-2 spike protein-mediated up-regulation of TLR-4 and ACE2 receptors. Theoretical Importance The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19. Data Collection: The data for this study was collected from THP-1 cells that were treated with SARS-CoV-2 spike protein or a control. The metabolomic profiles of the cells were then compared using 1H-NMR and MetaboAnalyst 5.0 software. Analysis Procedures: The metabolomic profiles of the THP-1 cells were analyzed using 1H-NMR and MetaboAnalyst 5.0 software. The software was used to identify and quantify the cells' metabolites and compare the control and spike-protein treatment groups. Questions Addressed: The question addressed by this study was whether SARS-CoV-2 spike protein could cause metabolic alterations in THP-1 cells and whether Antcin A can reverse these alterations. Conclusion: The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19.Keywords: SARS-CoV-2-spike, ¹H-NMR, metabolomics, antcin-A, taiwanofungus camphoratus
Procedia PDF Downloads 714585 Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology
Authors: Harika Atmaca, Emir Bozkurt, Latife Merve Oktay, Selim Uzunoglu, Ruchan Uslu, Burçak Karaca
Abstract:
Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.Keywords: trabectedin, prostate cancer, omic protein expression profile, apoptosis
Procedia PDF Downloads 4424584 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water
Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed
Abstract:
Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.Keywords: chlorine, protein, potassium iodide, water
Procedia PDF Downloads 3774583 Bioinformatics Approach to Support Genetic Research in Autism in Mali
Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind
Abstract:
Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations
Procedia PDF Downloads 834582 Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction
Authors: Vrushali Guhe, Shailza Singh
Abstract:
Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major.Keywords: ATG8, leishmaniasis, surface plasmon resonance, MD simulation, molecular docking, peptide designing, therapeutics
Procedia PDF Downloads 804581 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization
Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner
Abstract:
Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids
Procedia PDF Downloads 2314580 ANXA1 Plays A Nephroprotective Role By Maintaining Mitochondrial Homeostasis Via Upregulating Uncoupling Protein 1 In Diabetic Nephropathy
Authors: Zi-Han Li, Lu Fang, Liang Wu, Dong-Yuan Chang, Manyuan Dong, Liang Ji, Qi Zhang, Ming-Hui Zhao, Sydney C.W. Tang, Lemin Zheng, Min Chen
Abstract:
Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, it was found that annexin A1(ANXA1) could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, it was identified that uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) through combining with thioredoxin. Moreover, specific overexpression of UCP1 in renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established a novel principle to harness the power of uncouplers for the treatment of DN.Keywords: diabetic nephropathy, uncoupling protein 1, mitochondrial homeostasis, cardiolipin metabolism
Procedia PDF Downloads 834579 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 724578 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling
Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin
Abstract:
Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.Keywords: breast cancer, metastasis, PPI networks, protein conformational changes
Procedia PDF Downloads 2444577 Effect of Nicorandil in Bile Duct Ligation-Induced Liver Fibrosis in Rats: Role of Hepatic Stellate Cells
Authors: Y. S. Mohamed, L. A. Ahmed, H. A. Salem, A. M. Agha
Abstract:
Liver Fibrosis is one of the most serious conditions that affect the Egyptian society. In the present study, the effect of nicorandil was investigated in experimentally-induced liver fibrosis by bile duct ligation in rats. Nicorandil (3mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed a significant improvement in liver function tests (ALT and ALP) as well as a significant decrease in oxidative stress biomarkers (TBARS and GSH), area of fibrosis and activity of hepatic stellate cells as indicated by decreased expression of alpha smooth muscle actin.Moreover, nicorandil treatment decreased HSCs proliferation due to its inhibitory effects on protein kinase C(PKC) and Platelet derived growth factor (PDGF) . Oral administration of either glibenclamide (10 mg/kg/day)(a KATP channel blocker) or L-NAME (30 mg/kg/day) (an inhibitor of nitric oxide synthase) blocked the protective effects of nicorandil. However, nicorandil and L-NAME treated group showed more or less results similar to that of untreated bile duct ligated group. In conclusion, nicorandil was effective against the development of bile duct ligated-induced liver fibrosis in rats where activation of the NO pathway plays an important role in the protective effect nicorandil.Keywords: hepatic stellate cells, nicorandil, nitric oxide donor, liver fibrosis
Procedia PDF Downloads 6114576 Glycation of Serum Albumin: Cause Remarkable Alteration in Protein Structure and Generation of Early Glycation End Products
Authors: Ishrat Jahan Saifi, Sheelu Shafiq Siddiqi, M. R. Ajmal
Abstract:
Glycation of protein is very important as well as a harmful process, which may lead to develop DM in human body. Human Serum Albumin (HSA) is the most abundant protein in blood and it is highly prone to glycation by the reducing sugars. 2-¬deoxy d-¬Ribose (dRib) is a highly reactive reducing sugar which is produced in cells as a product of the enzyme thymidine phosphorylase. It is generated during the degradation of DNA in human body. It may cause glycation in HSA rapidly and is involved in the development of DM. In present study, we did in¬vitro glycation of HSA with different concentrations of 2-¬deoxy d-¬ribose and found that dRib glycated HSA rapidly within 4h incubation at 37◦C. UV¬ Spectroscopy, Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Circular Dichroism (CD) technique have been done to determine the structural changes in HSA upon glycation. Results of this study suggested that dRib is the potential glycating agent and it causes alteration in protein structure and biophysical properties which may lead to development and progression of Diabetes mellitus.Keywords: 2-deoxy D-ribose, human serum albumin, glycation, diabetes mellitus
Procedia PDF Downloads 2104575 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing
Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii
Abstract:
A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles
Procedia PDF Downloads 2574574 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds
Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain
Abstract:
World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.Keywords: buffalo, FSHR gene, bioinformatics, production
Procedia PDF Downloads 5324573 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation
Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst
Abstract:
There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation
Procedia PDF Downloads 1904572 L-Carnitine Supplementation and Exercise-Induced Muscle Damage
Authors: B. Nakhostin-Roohi, F. Khoshkhahesh, KH. Parandak, R. Ramazanzadeh
Abstract:
Introduction: The protective effect of antioxidants in diminishing the post-exercise rise of serum CK and LDH in individuals trained for competitive sports has come to light in recent years. This study was conducted to assess the effect of Two-week L-carnitine supplementation on exercise-induced muscle damage, as well as antioxidant capacity after a bout of strenuous exercise in active healthy young men. Methodology: Twenty active healthy men volunteered for this study. Participants were randomized in a double-blind placebo-controlled fashion into two groups: L-carnitine (C group; n = 10) and placebo group (P group; n = 10). The participants took supplementation (2000 mg L-carnitine) or placebo (2000 mg lactose) daily for 2weeks before the main trial. Then, participants ran 14 km. Blood samples were taken before supplementation, before exercise, immediately, 2h and 24h after exercise. Creatine kinase (CK), and lactate dehydrogenase (LDH), and total antioxidant capacity (TAC) were measured. Results: Serum CK and LDH significantly increased after exercise in both groups (p < 0.05). Serum LDH was significantly lower in C group than P group 2h and 24h after exercise (p < 0.05). Furthermore, CK was significantly lower in C group compared with P group just 24h after exercise (p < 0.05). Plasma TAC increased significantly 14 days after supplementation and 24h after exercise in C group compared with P group (p < 0.05). Discussion and conclusion: These results suggest two-week daily oral supplementation of L-carnitine has been able to promote antioxidant capacity before and after exercise and decrease muscle damage markers through possibly inhibition of exercise-induced oxidative stress.Keywords: L-carnitine, muscle damage, creatine kinase, Lactate dehydrogenase
Procedia PDF Downloads 4404571 Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala
Authors: Wael Ali Mohammed Hadi
Abstract:
Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target.Keywords: pseudomonas, marine, asparaginases, Kerala, whole-genome
Procedia PDF Downloads 2144570 Genome-Wide Insights into Whole Gut Microbiota of Rainbow Trout, Oncorhynchus Mykiss Associated with Changes in Dietary Composition and Temperature Regimens
Authors: John N. Idenyi, Hadimundeen Abdallah, Abigeal D. Adeyemi, Jonathan C. Eya
Abstract:
Gut microbiomes play a significant role in the growth, metabolism, and health of fish. However, we know very little about the interactive effects of variations in dietary composition and temperature on rainbow trout gut microbiota. Exactly 288 rainbow trout weighing 45.6g ± 0.05 (average ± SD) were fed four isocaloric, isolipidic, and isonitrogenous diets comprising 40% crude protein and 20% crude lipid and formulated as 100 % animal-based protein (AP) and a blend of 50 fish oil (FO)/50 camelina oil (CO), 100 % AP and100 % CO, 100 % plant-based protein (PP) and a blend of 50FO/50CO or 100 % PP and 100 % CO in 14 or 18°C for 150 days. Gut content was analyzed using 16S rRNA gene and shotgun sequencing. The most abundant phyla identified regardless of diet were Tenericutes, Firmicutes, Proteobacteria, Spirochaetes, Bacteroidetes, and Actinobacteria, while Aeromonadaceae and Enterobacteriaceae were dominant families in 18°C. Moreover, gut microbes were dominated by genes relating to an amino acid, carbohydrate, fat, and energy metabolisms and influenced by temperature. The shared functional profiles for all the diets suggest that plant protein sources in combination with CO could be as good as the fish meal with 50/50 FO & CO in rainbow trout farming.Keywords: aquafeed, aquaculture, microbiome, rainbow trout
Procedia PDF Downloads 914569 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 1744568 Influence of κ-Casein Genotype on Milk Productivity of Latvia Local Dairy Breeds
Authors: S. Petrovska, D. Jonkus, D. Smiltiņa
Abstract:
κ-casein is one of milk proteins which are very important for milk processing. Genotypes of κ-casein affect milk yield, fat, and protein content. The main factors which affect local Latvian dairy breed milk yield and composition are analyzed in research. Data were collected from 88 Latvian brown and 82 Latvian blue cows in 2015. AA genotype was 0.557 in Latvian brown and 0.232 in Latvian blue breed. BB genotype was 0.034 in Latvian brown and 0.207 in Latvian blue breed. Highest milk yield was observed in Latvian brown (5131.2 ± 172.01 kg), significantly high fat content and fat yield also was in Latvian brown (p < 0.05). Significant differences between κ-casein genotypes were not found in Latvian brown, but highest milk yield (5057 ± 130.23 kg), protein content (3.42 ± 0.03%), and protein yield (171.9 ± 4.34 kg) were with AB genotype. Significantly high fat content was observed in Latvian blue breed with BB genotype (4.29 ± 0.17%) compared with AA genotypes (3.42 ± 0.19). Similar tendency was found in protein content – 3.27 ± 0.16% with BB genotype and 2.59 ± 0.16% with AA genotype (p < 0.05). Milk yield increases by increasing parity. We did not obtain major tendency of changes of milk fat and protein content according parity.Keywords: dairy cows, κ-casein, milk productivity, polymorphism
Procedia PDF Downloads 2704567 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts
Authors: Dalia. G. Aseel
Abstract:
Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.Keywords: okra leaf curl virus, AV1 gene, sequencing, phylogenetic, cloning, purified protein, genetic diversity and viral proteins
Procedia PDF Downloads 1484566 CMPD: Cancer Mutant Proteome Database
Authors: Po-Jung Huang, Chi-Ching Lee, Bertrand Chin-Ming Tan, Yuan-Ming Yeh, Julie Lichieh Chu, Tin-Wen Chen, Cheng-Yang Lee, Ruei-Chi Gan, Hsuan Liu, Petrus Tang
Abstract:
Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations.Keywords: TCGA, cancer, mutant, proteome
Procedia PDF Downloads 5934565 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase
Authors: Reshu Saxena, R. K. Tripathi
Abstract:
HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion
Procedia PDF Downloads 4084564 A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar
Authors: Khanh D.Do, Loi V.Nguyen, Thanh N.Nguyen, Thang M.Nguyen, Vu T.Tran
Abstract:
Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure.Keywords: multipath, secondary surveillance radar, digital signal processing, reflection
Procedia PDF Downloads 1624563 Understanding Consumption Planning Behaviors
Authors: Gaosheng Ju
Abstract:
Our empirical evidence supports a model of consumption planning behaviors with the following two characteristics. First, households formulate a rational consumption target based on their desired target, displaying a diminishing sensitivity to the discrepancy between them. Second, the established target is a reference point for their planned consumption. The diminishing sensitivity leads to opposite reactions in higher and lower quantiles of both consumption targets and consumption growth to changes in economic conditions. This phenomenon accounts for the perplexingly low correlation between consumption and other macroeconomic variables. Furthermore, the opposing movements of consumption targets offer new insights into consumption-based asset pricing.Keywords: consumption planning, reference point, diminishing sensitivity, quantile regression, asset pricing puzzles
Procedia PDF Downloads 82