Search results for: natural disaster forecasting
6317 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites
Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib
Abstract:
Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.Keywords: natural fibres, cement composites, construction materia, sustainability, stregth, durability
Procedia PDF Downloads 2276316 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction
Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade
Abstract:
Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction
Procedia PDF Downloads 3966315 Investigation of Mechanical Properties on natural fiber Reinforced Epoxy Composites
Authors: Gopi Kerekere Rangaraju, Madhu Puttegowda
Abstract:
Natural fibres composites include coir, jute, bagasse, cotton, bamboo, and hemp. Natural fibers come from plants. These fibers contain lingo cellulose in nature. Natural fibers are eco-friendly; lightweight, strong, renewable, cheap, and biodegradable. The natural fibers can be used to reinforce both thermosetting and thermoplastic matrices. Thermosetting resins such as epoxy, polyester, polyurethane, and phenolic are commonly used composites requiring higher performance applications. They provide sufficient mechanical properties, in particular, stiffness and strength at acceptably low-price levels. Recent advances in natural fibers development are genetic engineering. The composites science offers significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. Natural fibers composites are attractive to industry because of their low density and ecological advantages over conventional composites. These composites are gaining importance due to their non-carcinogenic and bio-degradable nature. Natural fibers composites are a very costeffective material, especially in building and construction, packaging, automobile and railway coach interiors, and storage devices. These composites are potential candidates for the replacement of high- cost glass fibers for low load bearing applications. Natural fibers have the advantages of low density, low cost, and biodegradabilityKeywords: PMC, basalt, coir, carbon fibers
Procedia PDF Downloads 1376314 Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics
Authors: S. Parisi, Ch. Achillas, D. Aidonis, D. Folinas, N. Moussiopoulos
Abstract:
Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.Keywords: telecommunications container, design, case study, humanitarian logistics
Procedia PDF Downloads 4616313 Importance of Geologists at Municipalities. Colombian Case
Authors: Clemencia Gomez
Abstract:
Geology is currently absent from Colombia's education system, leading to a lack of geological awareness that hinders essential scientific training about Earth and its spatial and temporal dimensions. Understanding geological concepts is crucial for tackling challenges like climate change, sustainable resource management, geological risk mitigation, and groundwater management. Citizens have the right to receive a comprehensive scientific education that enhances their critical thinking regarding social, environmental, and economic issues. Geological sciences are vital in this context, as they enable the sustainable use of the planet's resources and effective management of human impacts. Additionally, geoethics should be integral to every citizen's education, highlighting the necessity of responsibly utilizing natural resources found in the Earth's surface and subsurface, which are fundamental to many everyday products. The Colombian associations of Geology aims to address these gaps by advocating for the appointment of geologists in municipalities. These professionals would assist in reviewing technical aspects of urban planning, identifying geological risks, pinpointing water supply opportunities, supporting sustainable mineral-energy projects, and promoting geological education in schools. The role of a professional in Earth sciences is crucial for municipalities for several reasons: Natural Resource Management: Earth scientists help in managing and conserving natural resources such as water, minerals, and soil. Their expertise ensures sustainable use and helps prevent depletion. Environmental Protection: They assess environmental impacts and advise on policies to protect ecosystems and biodiversity. This is vital for maintaining the health of local environments. Disaster Preparedness and Response: Professionals in this field analyze geological hazards like earthquakes, floods, and landslides. They contribute to developing early warning systems and emergency response plans, which can save lives and property. Climate Change Mitigation: Earth scientists study climate patterns and contribute to strategies for mitigating climate change impacts. This includes advising on land use planning and developing resilience strategies for communities. Urban Planning and Development: Their expertise is essential in urban planning, ensuring that infrastructure development considers geological and environmental factors. This helps prevent construction in hazardous areas and promotes sustainable development. Public Education and Awareness: They play a vital role in educating the public about Earth-related issues, fostering greater community engagement in environmental conservation and disaster preparedness. In summary, professionals in Earth sciences significantly contribute to the sustainability, safety, and well-being of municipalities and their residents.Keywords: social geology, safety, sustainability, municipalities
Procedia PDF Downloads 156312 Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim
Authors: Fan Yu
Abstract:
An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation.Keywords: energy conservation, atrium, natural lighting, architectural design
Procedia PDF Downloads 1966311 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 826310 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 696309 The Judiciary as Pacemaker? Considering the Role of Courts in an Expansion of Protection for War Refugees and People Fleeing Natural Disasters
Authors: Charlotte Lülf
Abstract:
Migration flows, resulting from war, climate change or economic crisis cannot be tackled by single states but need to be addressed as a transnational and international responsibility. The traditional architecture surrounding the work of the UNHCR and the 1951 Convention, however, is not equipped to deal with these challenges. Widely excluded from legal protection are people not individually persecuted for the statutory criteria, people that flee from the indiscriminate effects of an armed conflict as well as people fleeing natural disasters. With the lack of explicit legal protection and the political reluctance of nation states worldwide to extend their commitment in new asylum laws, the judiciary must be put in focus: it plays a unique role in interpreting and potentially expanding the application of existing regulations. This paper as part of an ongoing Ph.D. Project deals with the current and partly contradicting approaches to the protection of war- and climate refugees. Changing jurisprudential practice of national and regional courts will be assessed, as will be their dialogue to interpret the international obligations of human rights law, migration laws, and asylum laws in an interacting world. In recent judgments refoulment to an armed conflict as well as countries without adequate disaster relief or health care was argued as violating fundamental human and asylum law rights and therefore prohibited – even for applicants without refugee status: The first step towards access to subsidiary protection could herewith be established. Can one observe similar developments in other parts of the world? This paper will evaluate the role of the judiciary to define, redefine and potentially expand protection for people seeking refuge from armed conflicts and natural disasters.Keywords: human rights law, asylum-seekers, displacement, migration
Procedia PDF Downloads 2786308 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator
Authors: Mohammad Ruhul Amin, Nusrat Jahan
Abstract:
Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization
Procedia PDF Downloads 5016307 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 4226306 Land Tenure and Erosion as Determinants of Guerrilla Violence in Assam, India: An Ethnographic and Remote Sensing Approach
Authors: Kevin T. Inks
Abstract:
India’s Brahmaputra River Valley has, since independence, experienced consistent low-intensity guerrilla warfare between ethnic and religious groups. These groups are often organized around perceived ethnic territoriality, and target civilians, communities, and especially migrants belonging to other ethnic and religious groups. Intense flooding and erosion have led to widespread displacement, and disaster relief funds are largely tied to legal land tenure. Displaced residents of informal settlements receive little or no resettlement aid, and their subsequent migration strategies and risk from guerrilla violence are poorly understood. Semi-structured interviews and comprehensive surveys focused on perceptions of risk, efficacy of disaster relief, and migration and adaptation strategies were conducted with households identified as being ‘at-risk’ of catastrophic flooding and erosion in Majuli District, Assam. Interviews with policymakers and government workers were conducted to assess disaster relief efforts in informal settlements, and remote sensing methods were used to identify informal settlement and hydrogeomorphic change. The results show that various ethnic and religious groups have differential strategies and preferences for resettlement. However, these varying strategies are likely to lead to differential levels of risk from guerrilla violence. Members of certain ethnic groups residing in informal settlements, in the absence of resettlement assistance, are more likely to seek out unofficial settlement on land far from the protection of the state and experience greater risk of becoming victims of political violence. As climate change and deforestation are likely to increase the severity of the displacement crisis in the Brahmaputra River Valley, more comprehensive disaster relief and surveying efforts are vital for limiting migration and informal settlement in potential sites of guerrilla warfare.Keywords: climate, displacement, flooding, India, violence
Procedia PDF Downloads 1086305 Early Detection of Major Earthquakes Using Broadband Accelerometers
Authors: Umberto Cerasani, Luca Cerasani
Abstract:
Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.Keywords: earthquake, accelerometer, earthquake forecasting, seism
Procedia PDF Downloads 1476304 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 1126303 Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion
Authors: Juhan Kim, Jinsoo Kim
Abstract:
South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals.Keywords: natural gas, Panama Canal, portfolio analysis, South Korea
Procedia PDF Downloads 2946302 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change
Procedia PDF Downloads 1146301 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco
Authors: Azzouzi Fadoua
Abstract:
This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.Keywords: watershed, erosion, natural vulnerability, anthropogenic
Procedia PDF Downloads 1566300 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities
Authors: Khaled M. Alhawiti
Abstract:
This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.Keywords: data retrieval, information retrieval, natural language processing, text structuring
Procedia PDF Downloads 3446299 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake
Authors: Minami Ito, Akihiro Iijima
Abstract:
On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster
Procedia PDF Downloads 2246298 Identification of Flood Prone Areas in Adigrat Town Using Boolean Logic with GIS and Remote Sensing Technique
Authors: Fikre Belay Tekulu
Abstract:
The Adigrat town lies in the Tigray region of Ethiopia. This region is mountainous and experiences a semiarid type of climate. Most of the rainfall occurs in four months of the year, which are June to September. During this season, flood is a common natural disaster, especially in urban areas. In this paper, an attempt is made to identify flood-prone areas in Adigrat town using Boolean logic with GIS and remote sensing techniques. Three parameters were incorporated as land use type, elevation, and slope. Boolean logic was used as land use equal to buildup land, elevation less than 2430 m, and slope less than 5 degrees. As a result, 0.575 km² was identified severely affected by floods during the rainy season.Keywords: flood, GIS, hydrology, Adigrat
Procedia PDF Downloads 1466297 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan
Authors: Munenari Inoguchi, Keiko Tamura
Abstract:
In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.Keywords: building damage inspection, flood, geographic information system, spatial interpolation
Procedia PDF Downloads 1286296 A Prediction Model of Tornado and Its Impact on Architecture Design
Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen
Abstract:
Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design
Procedia PDF Downloads 1406295 Markov Switching of Conditional Variance
Authors: Josip Arneric, Blanka Skrabic Peric
Abstract:
Forecasting of volatility, i.e. returns fluctuations, has been a topic of interest to portfolio managers, option traders and market makers in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most common used models are GARCH type models. As standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance, it is difficult the predict volatility using standard GARCH models. Due to practical limitations of these models different approaches have been proposed in the literature, based on Markov switching models. In such situations models in which the parameters are allowed to change over time are more appropriate because they allow some part of the model to depend on the state of the economy. The empirical analysis demonstrates that Markov switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility for selected emerging markets.Keywords: emerging markets, Markov switching, GARCH model, transition probabilities
Procedia PDF Downloads 4576294 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 1666293 Hanna Arendt and Al-Farabi’s Non-Naturalistic Political Philosophy
Authors: Mohammad Hossein Badamchi
Abstract:
As Leo Strauss demonstrates in his works, Political Philosophy in the western tradition is an epistemic-naturalistic tradition insofar Hanna Arendt mentioning the deep conflict between philosophy and politics, opposed to be named “political philosopher” prefer the title “political thinker” for herself. In fact, the Western political philosophy’s tendency to derive politics from natural law and epistemic argumentations makes a paradox between the actual “the political” and the theoretical “natural politics” in the western tradition. In this paper, we want to show that Hanna Arendt, in her exploration to find a new realm of the non-naturalistic way of thinking about the political is walking on a completely different tradition of political philosophy which was first established by Al-Farabi, the founder of Islamic political philosophy around thousand years after Greek Philosophy. Despite Aristotelian Polis which is a Natural community based on true natural rationality to reach the natural purposes of mankind, Al-Farabi’s Madine (his reconstructed concept of Aristotelian Polis) is completely constructed against natural cities, which are formulated by necessity logic of natural arguments and natural deception of humanity. In fact, Farabi considers the natural understanding of politics as Ignorant ideologies used by governments to suppress people. Madine in Farabi’s work is not a natural institution but is a collaborative constitution founded by citizens. So despite Aristotelian thinking, here we don’t have just A Polis that is the one true polis, but we have various multiple Madines among one, is virtuous not by definition but by real action of citizens and civil relations. Al-Farabi’s political philosophy is not a Naturalistic-epistemic Political Philosophy but is a Phronetic Political Philosophy which Hanna Arendt wants to establish outside of western contemplative anti-active political philosophy tradition.Keywords: al-farabi, hanna arendt, natural politics, the political, political philosophy
Procedia PDF Downloads 2996292 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 4506291 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1366290 Positive Effects of Natural Gas Usage on Air Pollution
Authors: Ismail Becenen
Abstract:
Air pollution, a consequence of urbanization brought about by modern life, is as global as it is local and regional. Because of the adverse effects of air pollution on human health, air quality is given importance all over the world. According to the decision of the World Health Organization, clean air is the basic necessity for human health and well-being. It poses a very high risk especially for heart diseases and stroke cases. In this study, the positive effects of natural gas usage on air pollution in cities are explained by using literature scans and air pollution measurement values. Natural gas is cleaner than other types of fuel. It contains less sulfur and organic sulfur compounds. When natural gas burns, it does not leave ashes, it does not cause problems in the rubbish mountains. It's a clean fuel, it easily burns and shines. It is a burning gas that is easy and efficient. In addition, there is not a toxic effect for people in case of inhalation. As a result, the use of natural gas needs to be widespread to reduce air pollution around the world in order to provide a healthier life for people and the environment.Keywords: natural gas, air pollution, sulfur dioxide, particulate matter, energy
Procedia PDF Downloads 1986289 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility
Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari
Abstract:
Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach
Procedia PDF Downloads 2816288 Print Media Framing of National Disasters: A Content Analysis of the Daily Graphic and Daily Guide
Authors: Abena Abokoma Asemanyi
Abstract:
The study examined how the National Disasters are framed in the print media: a study of Daily Graphic newspaper in Ghana. The communication theories employed to conduct this study was Agenda Setting Theory by McCombs and Shaw and the Framing theory by Goffman and Entman. The media’s coverage of National Disasters are of much concern to the general public. This research seeks to know how the Daily Graphic framed National Disasters that occurred in January 2015 and June 2015 respectively. The January 2015 National Disasters was termed as Fire Outbreaks while the June 2015 National Disasters was Twin Disasters. A total of 43 disaster news stories were analysed for this study. Out of the total number, 9 headline stories were analysed in the month of January 2015 and 34 headline stories were looked at in the month of June 2015. The study came up with five (5) themes. Through Content Analysis, the study also revealed that the theme of Action featured more than the other themes which are Fear, Violence, Sympathy and Confusion. Finally, the study showed the number of days disaster news headlines lasted in the Daily Graphic during the period stated above. It was revealed that the Fire Outbreaks in January 2015 appeared in the Daily Graphic for 8 days while the Twin Disasters appeared in 16 days in June 2015.Keywords: national disaster framing, ghana, daily graphic, daily guide
Procedia PDF Downloads 438