Search results for: early Alzheimer’s recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5349

Search results for: early Alzheimer’s recognition

4959 Early Childhood Care and Education in the North-West of Nigeria: Trends and Challenges

Authors: Muhammad Adamu Kwankwaso

Abstract:

Early childhood is a critical period of rapid physical, cognitive and psycho-social development of a child. The quality of care and Education which a child receives at this crucial age will determine to a great extent the level of his/her physical and cognitive development in the future. In Nigeria, Early Childhood Care and Education (ECCE) is a fundamental aspect or form of Education for children between the age of 3-6. It was started after independence as pre-primary Education or early child development as contained in the 1977 National Policy on Education. The trends towards ECCE in Nigeria and the northwestern part of the country in particular keep up changing as in the case of other part of the world. The current trends are now towards expansions, inclusiveness, redefinition, early literacy, increased government participation and the unprecedented societal response and awareness towards the Education of the younger children. While all hands are on deck to ensure successful implementation of the ECCE programme, it is unfortunate that, ECCE is facing some challenges. This paper therefore, examines the trends in Early Childhood Care and Education and the major challenges in the north west of Nigeria. Some of the major challenges include, inadequate trained ECCE teachers, lack of unified curriculum, teacher pupil’s ratio, and the medium of instructions and inadequate infrastructural and teaching facilities respectively. To improve the situation the paper offered the following recommendations; establishment of more ECCE classes, enforcement for the use of mothers’ tongue or the languages of the immediate community as a medium of instructions, and adequate provision of infrastructural facilities and the unified curriculum across the northwestern States of Nigeria.

Keywords: early childhood care, education, trends, challenges

Procedia PDF Downloads 474
4958 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 146
4957 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
4956 'Value-Based Re-Framing' in Identity-Based Conflicts: A Skill for Mediators in Multi-Cultural Societies

Authors: Hami-Ziniman Revital, Ashwall Rachelly

Abstract:

The conflict resolution realm has developed tremendously during the last half-decade. Three main approaches should be mentioned: an Alternative Dispute Resolution (ADR) suggesting processes such as Arbitration or Interests-based Negotiation was developed as an answer to obligations and rights-based conflicts. The Pragmatic mediation approach focuses on the gap between interests and needs of disputants. The Transformative mediation approach focusses on relations and suits identity-based conflicts. In the current study, we examine the conflictual relations between religious and non-religious Jews in Israel and the impact of three transformative mechanisms: Inter-group recognition, In-group empowerment and Value-based reframing on the relations between the participants. The research was conducted during four facilitated joint mediation classes. A unique finding was found. Using both transformative mechanisms and the Contact Hypothesis criteria, we identify transformation in participants’ relations and a considerable change from anger, alienation, and suspiciousness to an increased understanding, affection and interpersonal concern towards the out-group members. Intergroup Recognition, In-group empowerment, and Values-based reframing were the skills discovered as the main enablers of the change in the relations and the research participants’ fostered mutual recognition of the out-group values and identity-based issues. We conclude this transformation was possible due to a constant intergroup contact, based on the Contact Hypothesis criteria. In addition, as Interests-based mediation uses “Reframing” as a skill to acknowledge both mutual and opposite needs of the disputants, we suggest the use of “Value-based Reframing” in intergroup identity-based conflicts, as a skill contributes to the empowerment and the recognition of both mutual and different out-group values. We offer to implement those insights and skills to assist conflict resolution facilitators in various intergroup identity-based conflicts resolution efforts and to establish further research and knowledge.

Keywords: empowerment, identity-based conflict, intergroup recognition, intergroup relations, mediation skills, multi-cultural society, reframing, value-based recognition

Procedia PDF Downloads 342
4955 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 125
4954 Voices of Youth: Contributing to Healthy Teens

Authors: Christa Beyers

Abstract:

Investing in the health of youth is essential for the well-being of society. If youth do not live a healthy life, the future of the global workforce and overall development of adolescents looks bleak given the challenges posed in this developmental stage. The idea of sexuality education at home and in our schools is a controversial and contentious subject, as many parents and teachers do not hold the same beliefs as to what content should be taught. Despite high incidence of HIV and STD infections, early school dropout and teen pregnancies, sexuality education has still not been given the recognition or importance it deserves. By giving youth a voice can lead to both behavioural and policy changes. This article is based on a literature review of sex and sexuality education from a social studies approach. This article argues that adults tend to teach from their own perspective, which does not meet the needs of youth, thereby ignoring the social aspects of sexual behaviour.

Keywords: sexuality education, adolescents, communication, cycle of socialization

Procedia PDF Downloads 198
4953 Effect of Early Therapeutic Intervention for the Children With Autism Spectrum Disorders: A Quasi Experimental Design

Authors: Sultana Razia

Abstract:

The number of children whose social, communication and behavior pattern is affected due to mental and developmental conditions is on the rise. Most of these conditions develop to uncontrollable levels because of ignorance and unaware about their child’s condition. The many myths surrounding mental or developmental conditions are a major cause of families of affected children to develop bitterness and to shy off from seeking appropriate help in time. Several early intervention programs have been put in place, and the number of beneficiaries of these programs is increasing by the day. This research seeks to look into early intervention programs and their effectiveness. The purpose of this study was to investigate the effect of early therapeutic intervention for the children with autism spectrum disorder. Participants were 140 children with autism spectrum disorder from Autism Corner in a selected rehabilitation center of Bangladesh. This study included children who are at age of 18-month to 36-month and who were taking occupational therapy and speech and language therapy from the autism center. They were primarily screened using M-CHAT; however, children with other physical disability or medical conditions excluded. 3-months interventions of 6 sessions per week are a minimum of 45-minutes long per session, one to one interaction followed by parent-led structured home-based therapy were provided. The results indicated that early intensive therapeutic intervention improve understanding, social skills and sensory skills. It can be concluded that therapeutic early intervention a positive effect on diminishing symptoms of Autism Spectrum Disorder.

Keywords: M-CHAT, ASD, sensory cheeklist, OT

Procedia PDF Downloads 74
4952 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 361
4951 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 366
4950 To Investigate Quality of Life in Elderly Persons with Dementia Residing in Assisting Living Facility

Authors: Ya-Chuan Hsu, Wen-Chen Ouyang, Wei-Siang Huang

Abstract:

Problem/Background: With constantly increasing aged populations, quality of life (QOL) in persons with dementia has become a significant research concern. The Alzheimer’s Related Quality of Life (ADRQL) is a high-validated, theory-derived, and multidimensional instrument. It has widely utilized in many countries, except in Taiwan. However, diverse results of quality of life from different countries by using the same measurement can provide the potential to help understand the impact of cultural contributor on QOL. Objective: To investigate the extent to which quality of life on older adults with dementia in Taiwan. Methods: Cross-sectional, descriptive study conducted in an assisting living facility affiliated with a daycare center in southern Taiwan. A purposeful sample of 34 participants was recruited. Inclusion criteria included those who were at least 65 years old, able to communicate, and diagnosed with mild to moderate dementia. The QOL was measured by Chinese version ADRQL. This observational instrument consists of 30 items that is divided into five subscales with the full range of each subscale scores from 0 to 100.0. Higher scores indicate better QOL. Results: The means for subscale of the Social Interaction, Awareness of Self, Feelings and Mood, Enjoyment of Activities, and Response to Surroundings were 87.9, 74.7, 91.3, 64.5, and 90.3, respectively. The overall mean for the ADQOL was 0.83. Conclusion: Findings suggest that the level of Enjoyment of Activities is the lowest and may convey information about a need of evaluation on arrangement of facility’s activities.

Keywords: dementia, quality of life, elders, Alzheimer’s related quality of life

Procedia PDF Downloads 300
4949 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 294
4948 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
4947 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
4946 Freedom of Information and Freedom of Expression

Authors: Amin Pashaye Amiri

Abstract:

Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.

Keywords: freedom of information, freedom of expression, human rights, government information

Procedia PDF Downloads 548
4945 Development and Validation of Family Outcome Survey – Revised Taiwan Version

Authors: Shih-Heng Sun, Hsiu-Yu Chang

Abstract:

“Family centered service model” becomes mainstream in early intervention. Family outcome should be evaluated in addition child improvement in terms of outcome evaluation in early intervention. The purpose of this study is to develop a surveys to evaluate family outcomes in early intervention. Method: “Family Outcomes Survey- Revised Taiwan Version” (FOS-RT) was developed through translation, back-translation, and review by the original author. Expert meeting was held to determine the content validity. Two hundred and eighty six parent-child dyads recruited from 10 local Early Intervention Resource Centers (EIRC) participated in the study after they signed inform consent. The results showed both parts of FOS-RT exhibits good internal consistency and test-retest reliability. The result of confirmatory factor analysis indicated moderate fit of 5 factor structure of part A and 3 factor structure of part B of FOS-RT. The correlation between different sessions reached moderate to high level reveals some sessions measure similar latent trait of family outcomes. Correlation between FOS-RT and Parents‘ Perceived Parenting Skills Questionnaire was calculated to determine the convergence validity. The moderate correlation indicates the two assessments measure different parts of early intervention outcome although both assessments have similar sub-scales. The results of this study support FOS-RT is a valid and reliable tool to evaluate family outcome after the family and children with developmental disability receive early intervention services.

Keywords: early intervention, family service, outcome evaluation, parenting skills, family centered

Procedia PDF Downloads 506
4944 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
4943 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
4942 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101
4941 Protective Role of Phycobiliproteins in ROS-Associated Physiological Anomalies

Authors: Ravi Raghav Sonani, Niraj Kumar Singh, Jitendra Kumar, Datta Madamwar

Abstract:

Phycobiliproteins (PBPs) are light harvesting proteins showing very strong absorbance and fluorescence in the visible range of the solar spectrum. Phycoerythrin (PE) and phycocyanin (PC) are majorly found PBPs in the cyanobacteria and red algae. In the present study, we have investigated the reactive oxygen species (ROS)-averting capacity of purified PE and PC of cyanobacterial origin. Furthermore, the possibility - whether the ROS-averting potential of PBPs can be explored in the therapeutics of oxidative stress associated physiological anomalies including aging and neurodegenerative diseases. The nematode Caenorhabditis elegans has been used as model organism in this study. PE and PC treatment moderated normal aging and associated physiological functionalities like pharyngeal pumping and locomotion of C. elegans. Moreover, PE-treatment enhanced the stress (oxidative and heat) tolerance upon PE and PC treatment. Specifically, PE treatment was also noted to moderate the progression of Alzheimer’s disease in transgenic C. elegans CL4176. However, PC-treatment curtailed the polyQ aggregation mediated proteotoxicity in C. elegans AM141 (Huntington disease model) under stressed (paraquat stress) as well as normal conditions. The effectiveness of PE and PC in expanding the lifespan of mutant C. elegans knockout for some up- (daf 16) and down- (daf-2 and age-1) stream regulators of insulin/IGF-1 signalling (IIS) shows the independency of their effects from DAF-2–AGE-1–DAF-16 signalling pathway. In conclusion, the present report demonstrates the anti-aging and neuro-protective potential of cyanobacterial PE and PC.

Keywords: phycobiliproteins, aging, alzheimer, huntington, C. elegans

Procedia PDF Downloads 390
4940 A Collaborative Action Research by Using the Children’s School Success Plus Curriculum Framework to Support Early Childhood Education/Early Childhood Special Education Teachers to Build a Professional Learning Community

Authors: Chiou-Shiue Ko, Pei-Fang Wu, Shu-hsien Tseng

Abstract:

The researchers adopted two-year action research to investigate the professional collaborative process and development in learning communities for both early childhood and early childhood special education teachers on implementing the children’s school success curriculum framework. The participating teachers were recruited from three preschool sites for this current study. Research data were collected from multiple methods in order to ensure the data quality and validity. The results showed that participating educators had achieved professional growth, and they became more aware of teaching intentions and the preparation for the curriculum. Teachers in this research become more child-focused in teaching and create opportunities for children to participate in classroom activities and routines. The researcher also finds teachers’ participation levels were driven by each individual personality; during professional growth, some teachers are more proactive and reflective, and some are not. According to the research findings, suggestions for future studies and practices are provided.

Keywords: children’s school success curriculum framework, early childhood special education, preschool education, professional learning community

Procedia PDF Downloads 143
4939 Early Versus Delayed Antiretroviral Therapy in HIV‐positive People with Tuberculosis

Authors: Mohhamed El Habib Labdouni

Abstract:

Introduction: Co-infection with VIH and tuberculosis poses one of the major ongoing challenges for global TB and AIDS prevention and control. The objective of this study is to raise the issue of the resurgence of TB, in People living with VIH supported in a referent center in western Algeria. Its epidemiological, clinical, biological and radiological new trends, and to compare the mortality rate between early and delayed ART. Methods: It was a prospective study, during 36 months from the 01st/01/2012 to 31st/12/2014, by identifying and analyzing cases of TB-VIH co-infection. Our population was devised in two groups/ early ART and delayed ART. The primary and secondary endpoints were analyzed with Kaplan-Meier curves and log-rank test the period of follow up, which was fixed at 300 weeks. Results: Sixty cases of co-infection TB -VIH were enrolled in our study: 78.3% had pulmonary tuberculosis associated with extra-pulmonary, 13.3% had only pulmonary tuberculosis and 08.3% presented strictly extra-pulmonary TB. The clinical particularity of this co-infection is the frequency of serious localization such us: pleural 23.3%, peritoneal 31.7%, and meningeal suffusion 13.3%.y-.biologicaly we notice the predominance both of pancytopenia and leucoanemia, hyponatremia in 38,6% and hypokalemia in 19,3%. By analyzing Kaplan-Meier survival curves, we notice that early ART initiation is associated with a significant reduction of all-cause mortality (p = 0,000), and we have identified several prognostic factors such as hypokalemia hyponatremia, leukocytosis thrombopenemia leucothrombopenia (p = 0,005). Conclusion: Our study confirms most of the results reported in the literature. Early ART initiation reduces the rate of all-cause mortality, despite the probability of the occurrence of TB-IRIS.

Keywords: TB-HIV co-infection, early ART, hyponatremia, extrapulmonary tuberculosis

Procedia PDF Downloads 182
4938 Social Norms around Adolescent Girls’ Marriage Practices in Ethiopia: A Qualitative Exploration

Authors: Dagmawit Tewahido

Abstract:

Purpose: This qualitative study was conducted to explore social norms around adolescent girls’ marriage practices in West Hararghe, Ethiopia, where early marriage is prohibited by law. Methods: Twenty Focus Group Discussions were conducted with Married and Unmarried adolescent girls, adolescent boys and parents of girls using locally developed vignettes. A total of 32 in-depth interviews were conducted with married and unmarried adolescent girls, husbands of adolescent girls and mothers-in-law. Key informant interviews were conducted with 36 district officials. Data analysis was assisted by Open Code computer software. The Social Norms Analysis Plot (SNAP) framework developed by CARE guided the development and analysis of vignettes. A thematic data analysis approach was utilized to summarize the data. Results: Early marriage is seen as a positive phenomenon in our study context, and girls who are not married by the perceived ideal age of 15 are socially sanctioned. They are particularly influenced by their peers to marry. Marrying early is considered a chance given by God and a symbol of good luck. The two common types of marriage are decided: 1) by adolescent girl and boy themselves without seeking parental permission (’Jalaa-deemaa’- meaning ‘to go along’), and 2) by just informing girl’s parents (‘Cabsaa’- meaning ‘to break the culture’). Relatives and marriage brokers also arrange early marriages. Girls usually accept the first marriage proposal regardless of their age. Parents generally tend not to oppose marriage arrangements chosen by their daughters. Conclusions: In the study context social norms encourage early marriage despite the existence of a law prohibiting marriage before the age of eighteen years. Early marriage commonly happens through consensual arrangements between adolescent girls and boys. Interventions to reduce early marriage need to consider the influence of Reference Groups on the decision makers for marriages, especially girls’ own peers.

Keywords: adolescent girls, social norms, early marriage, Ethiopia

Procedia PDF Downloads 140
4937 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 338
4936 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation

Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov

Abstract:

Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.

Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren

Procedia PDF Downloads 269
4935 Characteristic and Prevalence of Cleft Lip and Palate Patient in Bandung Cleft Lip and Palate Center: A Descriptive Study

Authors: Kusmayadi Ita Nursita, Sundoro Ali

Abstract:

Cleft lip and palate are one of the most common congenital abnormalities in the face. It could happen to anyone, but mostly affect Asian population including Indonesia. Factors that influence the occurrence of cleft lip and palate vary from genetic to environmental factors. Children with cleft lip and palate will often have various problems such as airway disorders, eating disorders, speech and language developmental disorders, hearing disorders and psycho-social disorders, one of which is caused by appearance disorders. During his life, the child will experience multidisciplinary surgery and non-surgical treatment and can be accompanied by a psychological and financial burden on himself and his family. In Indonesia, there are no detailed scientific data on the prevalence and characteristic of cleft lip and palate patients. It was mainly caused by the absence of a national level organization, differences in geographical location, and the absence of national guidelines. This study aimed to describe the characteristic and prevalence of cleft lip and palate patients in Bandung Cleft Lip and Palate Center from 1 January 2016 to 31 December 2017. A total of 560 patients were included in the study. The highest percentage of cases are left unilateral cleft lip and palate with higher number of female patient and labioplasty as the most often surgical procedure to be conducted in Bandung Cleft Lip and Palate Center. In order to improve quality of life in patients with cleft lip and palate, early recognition and early treatment based on actual comprehensive data should be conducted. The data from Bandung Cleft Lip and Palate Center as one of the largest center of cleft lip and palate in West Java Indonesia hopefully could provide a big step of further comprehensive data collection in Indonesia and for the better overall management of cleft lip and palate in the future.

Keywords: cleft lip, cleft palate, characteristic, prevalence

Procedia PDF Downloads 137
4934 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
4933 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
4932 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 169
4931 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 271
4930 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519