Search results for: cement replacement materials
7470 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete
Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali
Abstract:
Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.Keywords: compressive strength, deflection, induction furnace slag, workability
Procedia PDF Downloads 3047469 Old Community Spatial Integration: Discussion on the Mechanism of Aging Space System Replacement
Authors: Wan-I Chen, Tsung-I Pai
Abstract:
Future the society aging of population will create the social problem has not had the good mechanism solution in the Asian country, especially in Taiwan. In the future ten year the people in Taiwan must facing the condition which is localization aging social problem. In this situation, how to use the spatial in eco way to development space use to solve the old age spatial demand is the way which might develop in the future Taiwan society. Over the next 10 years, taking care of the aging people will become part of the social problem of aging phenomenon. The research concentrate in the feasibility of spatial substitution, secondary use of spatial might solve out of spatial problem for aging people. In order to prove the space usable, the research required to review the project with the support system and infill system for space experiment, by using network grid way. That defined community level of space elements location relationship, make new definitions of space and return to cooperation. Research to innovation in the the appraisal space causes the possibility, by spatial replacement way solution on spatial insufficient suitable condition. To evaluation community spatial by using the support system and infill system in order to see possibilities of use in replacement inner space and modular architecture into housing. The study is discovering the solution on the Eco way to develop space use to figure out the old age spatial demand.Keywords: sustainable use, space conversion, integration, replacement
Procedia PDF Downloads 1767468 Antibiotic Guideline Adherence
Authors: I. A. Harris, J. M. Naylor
Abstract:
Antibiotic guidelines are published in order to reduce the risk of perioperative infection in orthopaedics. We surveyed 20 orthopaedic hospitals in Australia to determine their protocols for antibiotic prophylaxis around joint replacement surgery. We tested the protocols against Australian guidelines. We found that less than half of all protocols adhered to Australian guidelines. This indicates that current practice may lead to increased infection rates and increased antibiotic resistance.Keywords: antibiotics, practice guidelines, orthopaedic surgery, joint replacement
Procedia PDF Downloads 5037467 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method
Authors: Fils Olivier Kamanzi
Abstract:
This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin
Procedia PDF Downloads 1087466 Development of Zero-Cement Binder Activated by Carbonation
Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang
Abstract:
Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag
Procedia PDF Downloads 4647465 Effects of Milk Fat Sustitution by Margarine on Iranian uf Brine Cheese
Authors: Mahnaz Manafi Dizaj Yekan, Mostafa Mazaheri Tehrani, Javad Hesari
Abstract:
Physicochemical properties of Ultrafiltered White cheese analogues made with substituting 1/3 and 2/3 of the dairy fat with vegetable fat, margarine, were studied during ripening. Results showed replacement of milk fat by margarine made to more hardness and springiness in cheese samples and overcome to softening of texture as one of the main defects of UF white cheeses. Analysis of Fatty acids Profiles of samples fat by Gas Chromatography revealed cheese analogues samples had higher ratio of unsaturated to saturated fatty acids and can led to improve nutritional quality of product. Sensorial characteristics of analogue cheeses were similar to control samples with respect to color but better than control samples in stiffness, while overall acceptance of analogues with 1/3 fat replacement was similar to control cheeses and better than analogue cheeses with 2/3 fat replacement.Keywords: analogue cheese, uf white cheese, margarine, stiffness, springiness, fatty acids profiles
Procedia PDF Downloads 4597464 The Effects of Microsilis, Super Plasticizer and Air Entrain in Lightweight Expanded Perlite Concrete
Authors: Yousef Zandi, Hoseyn Leka, Mahin Ganadi
Abstract:
This paper presents the results of a laboratory study carried out on effect of using the simultaneous of microsilis, super plasticizer and air entrain additives on compressive strength of light weight perlite concrete. In this study, 63 test specimens with different percentage and mixtures including microsilis, super plasticizer and air entrain were used. 63 test specimens with different mixtures including microsilis and air entrain were also prepared for comparison purposes. In the mixtures, lightweight perlite aggregate, microsilis, super plasticizer, air entrain, cement type I, sand and water were used. Laboratory test results showed that workability of lightweight perlite concrete was increased and compressive strength was released by the use of super plasticizer, without any change in water/cement ratio. We know that compressive strength of concrete is depends on water/cement ratio. Since, it was expected that the use of air entrain and super plasticizer lower water/cement ratio and raised strengths, considerably. It was concluded that use of simultaneous of air entrains and super plasticizer additive were not economical and use of air entrain and microsilis is better than use of air entrain, super plasticizer and microsilis. It was concluded that the best results were obtained by using 10% microsilis and 0.5% air entrain.Keywords: perlite, microsilis, air entrain, super plasticizer
Procedia PDF Downloads 3847463 Cat Stool as an Additive Aggregate to Garden Bricks
Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original
Abstract:
Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats
Procedia PDF Downloads 647462 A Social-Environmental Way for Production of Building Materials with Solid Residues
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque
Abstract:
Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: residue, sustainable, water treatment plants, WTR
Procedia PDF Downloads 5487461 Performance of Air Cured Concrete Treated with Waterproofing Admixtures or Surface Treatments
Authors: Sirwan Kamal, Hsein Kew, Hamid Jahromi
Abstract:
This paper reports results of a study conducted to investigate strength, sorptivity, and permeability under pressure of concrete specimens, cured using a water-based curing compound. The specimens are treated with waterproofing admixtures or surface treatments to enhance performance while exposed to water. Four types of concrete specimens were prepared in the laboratory, Portland cement (CEM I), Portland-fly ash (CEM II/A-V), Blast-furnace cement (CEM III) and Portland-silica fume (CEM II/A-D). Concrete cubes were de-molded three hours after casting, and sprayed with a curing compound. Admixtures were added to the mix during batching, whereas surface treatments were applied on concrete after 28 days. Compressive strength test was carried out to assess the efficiency of curing compound to develop required strength. In addition, sorptivity and permeability tests were conducted to evaluate the performance of treated specimens with respect to water ingress. Results show that strength development in specimens cured with curing compound achieved up to 96% and 90% at 7 and 28 days respectively, compared to cubes cured in water. Moreover, specimens treated with waterproofing admixtures or surface treatments materials characterized by hydrophobic impregnation considerably reduced water penetration compared to untreated control cubes. On the other hand, cubes treated with admixtures or surface treatments materials characterized by crystalline effect were ineffective in reducing water penetration.Keywords: admixtures, concrete, curing compound, surface treatments
Procedia PDF Downloads 1317460 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials
Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo
Abstract:
Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength
Procedia PDF Downloads 3897459 The Mechanical Characteristics of Rammed Earth with Plastic Fibers
Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos
Abstract:
In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material
Procedia PDF Downloads 737458 The Mechanical Properties of Rammed Earth with Plastic Fibers
Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos
Abstract:
In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material
Procedia PDF Downloads 697457 Innovative Housing Construction Technologies in Slum Upgrading
Authors: Edmund M. Muthigani
Abstract:
Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.Keywords: construction, housing, innovation, slum, technology
Procedia PDF Downloads 2067456 Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand
Authors: Ravande Kishore
Abstract:
The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry.Keywords: construction material, partial replacement, marble dust, compressive strength
Procedia PDF Downloads 4287455 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer
Authors: Zhang Tailong
Abstract:
Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.Keywords: copolymer-based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete
Procedia PDF Downloads 2467454 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks
Authors: Juan A. Ferriz-Papi, Simon Thomas
Abstract:
The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling
Procedia PDF Downloads 2997453 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement
Authors: M. Mlhem
Abstract:
Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.Keywords: additives, clay, compression strength, epoxy, stabilization
Procedia PDF Downloads 1277452 Discussing Concept Gratitude of Muslim Consumers Based on Islamic Law: A Confirmation on the Theory of Consumer Satisfaction through Imam Al-Ghazali's Thought
Authors: Suprihatin Soewarto
Abstract:
The background of writing this paper is to assess the truth of rejection of some Muslim scholars who develop Islamic economics on the concept of consumer satisfaction and replace it with the concept of maslahah. In the perspective of Islamic law, this rejection attitude needs to be verified in order to know the accuracy of the replacement of this concept of satisfaction with maslahah as part of consumer behavior. This is done so that replacement of rejection of the term satisfaction with maslahah is objective. This objective replacement of the term will surely be more enlightening and more just than the subjective substitution. Therefore the writing of this paper aims to get an answer whether the concept of satisfaction needs to be replaced? is it possible for Islamic law to confirm the theory of consumer satisfaction? The method of writing this paper using the method of literature with a critical analysis approach. The results of this study is an explanation of the similarities and differences of consumer satisfaction theory and consumer theory maslahah according to Islamic law. disclosure of the concept of consumer gratitude according to Islamic law and its implementation in Muslim consumer demand theory.Keywords: consumer's gratitude, islamic law, confirmation, satisfaction consumer's
Procedia PDF Downloads 2087451 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties
Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar
Abstract:
It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.Keywords: California bearing ratio, CBR, direct shear, fall-cone, sandy silt, SEM, zeolite
Procedia PDF Downloads 1357450 Comparison of Surface Hardness of Filling Material Glass Ionomer Cement Which Soaked in Alcohol Containing Mouthwash and Alcohol-Free Mouthwash
Authors: Farid Yuristiawan, Aulina R. Rahmi, Detty Iryani, Gunawan
Abstract:
Glass ionomer cement is one of the filling material that often used in the field of dentistry because it is relatively less expensive and mostly available. Surface hardness is one of the most important properties of restoration material; it is the ability of material to stand against indentation, which is directly connected to the material compressive strength and its ability to withstand abrasion. The higher surface hardness of a material means it is better to withstand abrasion. The existence of glass ionomer cement in the mouth makes it susceptible to any substance that comes into mouth, one of them is mouthwash which is a solution that used for many purposes such as antiseptic, astringent, to prevent caries, and bad breath. The presence of alcohol in mouthwash could affect the properties of glass ionomer cement, surface hardness. Objective: To determine the comparison of surface hardness of glass ionomer cement which soaked in alcohol containing mouthwash and alcohol-free mouthwash. Methods: This research is a laboratory experimental type study. There were 30 samples made from GC FUJI IX GP EXTRA and then soaked in artificial saliva for the first 24 hours inside incubator which temperature and humidity were controlled. Samples then divided into three groups. The first group will be soaked in alcohol-containing mouthwash; second group will be soaked alcohol-free mouthwash and control group will be soaked in artificial saliva for 6 hours inside incubator. Listerine is the mouthwash that was used on this research and surface hardness was examined using Vickers Hardness Tester. The result of this research shows mean value for surface hardness of the first group is 16.36 VHN, 24.04 VHN for second group, and 43.60 VHN for control group. The result one way ANOVA with post hoc Bonferroni comparing test show significant results p = 0.00. Conclusions: The data showed there were statistically significant differences of surface hardness between each group, which surface hardness of the first group is lower than the second group, and both surface hardness of the first (alcohol mouthwash) and second group (alcohol-free mouthwash) are lowered than control group (p = 0.00).Keywords: glass ionomer cement, mouthwash, surface hardness, Vickers hardness tester
Procedia PDF Downloads 2247449 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials
Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó
Abstract:
Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.Keywords: morphology, PE, roughness, titanium
Procedia PDF Downloads 1257448 Discovering Groundbreaking Geopolymer-Based Materials with Versatile Designs, Ideal for the Construction and Infrastructure Industry
Authors: Maryam Kiani
Abstract:
Geopolymer has gained significant prominence worldwide and is now widely regarded as a potential alternative to conventional Portland cement. Nevertheless, for it to be widely accepted and incorporated into national and international standards, it is crucial to establish precise definitions and dependable mix design methodologies for geopolymer materials. The lack of a common definition and methodology has led to inconsistencies and perplexity across various areas of research. Addressing this concern is imperative for several reasons. To overcome the existing inconsistencies and confusion, concerted efforts should be made to establish clear definitions and robust mix design methodologies for geopolymer materials. This can be achieved through collaborative research, knowledge sharing, and engagement with industry experts. By doing so, we can pave the way for the widespread acceptance and utilization of geopolymer materials, revolutionizing the construction and infrastructure industry in a sustainable and environmentally friendly manner. The primary goal of this article is to offer clear explanations regarding the different meanings of geopolymer and the various methodologies used in geopolymer processes. Its main aim is to improve comprehension of both unary and binary geopolymer systems. By thoroughly exploring existing research, this article strives to illuminate the diverse methods and techniques utilized in the exciting field of geopolymer science.Keywords: geopolymer, nanomaterials, structural materials, mechanical properties
Procedia PDF Downloads 1147447 Adhesion Study of Repair Mortar Based in Dune and Crushed Limestone Sand
Authors: Krobba Benharzallah, Kenai Said, Bouhicha Mohamed, Lakhdari Mohammed Fatah, Merah Ahmed
Abstract:
In recent years, great interest has been directed towards the use of local materials and natural resources in building and public works. This is to satisfy the enormous need for these materials and contribute to sustainable development. Among these resources, dune sand and limestone crushed sand, which can be an interesting alternative to the replacement of siliceous alluvial sands for the formulation of a repair mortar. The results found show that the particle size correction of dune sand by limestone sand and the addition of a superplasticizer are very beneficial in terms of adhesion and mechanical strength.Keywords: repair mortar, dune sand, crushed limestone sand, adhesion, mechanical strength
Procedia PDF Downloads 1627446 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation
Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son
Abstract:
Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl
Procedia PDF Downloads 3797445 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3667444 Effect of Silica Fume at Cellular Sprayed Concrete
Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee
Abstract:
Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.Keywords: cellular sprayed concrete, silica fume, deviation, permeability
Procedia PDF Downloads 1317443 The Effect of Tooth Brushing with Whitening and Non-Whitening Tooth Paste on Surface Roughness of Coated and Uncoated Glass Ionomer Cement
Authors: Hidayati, Eni Rahmi, Deli Mona, Cytha Nilam Chairani, Aulina Refri Rahmi
Abstract:
Background: Restoration materials could undergo changes in their clinical properties such as changes in roughness of the restoration's surface. An increase of surface roughness accelerates bacterial colonization and plaque maturation. It can be prevented by mechanically clean the tooth surface by brushing the teeth using toothpaste. Toothpaste may contain abrasives materials that usually found in whitening toothpaste. Those abrasive materials could increase the roughness of the restoration`s surface. Glass ionomer cement (GIC) is one of the restorative material widely used to this day. GC America has made an innovation called EQUIA to improve their wear resistance by coating the surface of GIC using G-Coat Plus. Objective: To determine the effect of teeth was brushing with whitening and non-whitening toothpaste to the surface roughness of coated and uncoated restoration (GIC). Methods: This research was a laboratory experimental with pretest-posttest group design. There were 28 samples which were divided into 2 groups. The first group was brushed with whitening toothpaste and the second group was brushed with non-whitening toothpaste. Each group was divided into group which coated by G-Coat Plus and group which left uncoated. The value of surface roughness was measured by using Roughness Tester. The data was analyzed by using independent t-test to determine differences between the surface roughness of coated samples and uncoated samples brushed with whitening and non-whitening toothpaste. Result: It was found that average roughness differences before and after being brushed by whitening toothpaste were smaller in coated samples than in uncoated samples (0.07 ± 0.09 < 0.12 ± 0.02). Similar results were also found in samples brushed by non-whitening toothpaste (0.02 ± 0.01 0.03 ± 0.01). The differences of average roughness in samples brushed with non-whitening toothpaste were smaller than samples brushed with whitening toothpaste. Conclusion: The data showed there were statistically significant differences between the surface roughness of coated samples and uncoated samples brushed with non-whitening toothpaste (p < 0.05) but the was no statistically significant to samples brushed with whitening toothpaste (p > 0.05).Keywords: surface roughness, toothpaste, EQUIA, coating
Procedia PDF Downloads 2477442 Implementing a Strategy of Reliability Centred Maintenance (RCM) in the Libyan Cement Industry
Authors: Khalid M. Albarkoly, Kenneth S. Park
Abstract:
The substantial development of the construction industry has forced the cement industry, its major support, to focus on achieving maximum productivity to meet the growing demand for this material. Statistics indicate that the demand for cement rose from 1.6 billion metric tons (bmt) in 2000 to 4bmt in 2013. This means that the reliability of a production system needs to be at the highest level that can be achieved by good maintenance. This paper studies the extent to which the implementation of RCM is needed as a strategy for increasing the reliability of the production systems component can be increased, thus ensuring continuous productivity. In a case study of four Libyan cement factories, 80 employees were surveyed and 12 top and middle managers interviewed. It is evident that these factories usually breakdown more often than once per month which has led to a decline in productivity, they cannot produce more than 50% of their designed capacity. This has resulted from the poor reliability of their production systems as a result of poor or insufficient maintenance. It has been found that most of the factories’ employees misunderstand maintenance and its importance. The main cause of this problem is the lack of qualified and trained staff, but in addition, it has been found that most employees are not found to be motivated as a result of a lack of management support and interest. In response to these findings, it has been suggested that the RCM strategy should be implemented in the four factories. The paper shows the importance of considering the development of maintenance strategies through the implementation of RCM in these factories. The purpose of it would be to overcome the problems that could reduce the level of reliability of the production systems. This study could be a useful source of information for academic researchers and the industrial organisations which are still experiencing problems in maintenance practices.Keywords: Libyan cement industry, reliability centred maintenance, maintenance, production, reliability
Procedia PDF Downloads 3897441 Mineral Slag Used as an Alternative of Cement in Concrete
Authors: Eskinder Desta Shumuye, Jun Zhao, Zike Wang
Abstract:
This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content.Keywords: accelerated carbonation, chloride-ion, concrete, ground-granulated blast furnace slag, GGBS, high-temperature
Procedia PDF Downloads 140