Search results for: artificial neural networks; crop water stress index; canopy temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24725

Search results for: artificial neural networks; crop water stress index; canopy temperature

24335 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 498
24334 Matching Law in Autoshaped Choice in Neural Networks

Authors: Giselle Maggie Fer Castañeda, Diego Iván González

Abstract:

The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.

Keywords: matching law, neural networks, computational models, behavioral sciences

Procedia PDF Downloads 74
24333 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks

Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf

Abstract:

Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.

Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks

Procedia PDF Downloads 168
24332 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
24331 Influence of Salicylic Acid Seed Priming on Catalase and Peroxidase in Zea mays L. Plant (Var- Sc.704) under Water Stress Condition and Different Irrigation Regimes

Authors: Arash Azarpanah, Masoud Zadehbagheri, Shorangiz Javanmardi

Abstract:

Abiotic stresses are the principle threat to plant growth and crop productivity all over the world. In order to improve the germination of corn seeds in drought stress conditions, effect of seed priming by various concentrations of salicylic acid (SA) (0.8 and 0.2 mM) on activities of catalase and peroxidase in Zea mays L. plant (Var-Sc.704) was evaluated at Agriculture Research Center located in Arsenjan city in Iran, during summer 2013. A farm research was done in RCBD as factorial with three replications. We considered four irrigation was carried out once the cumulative evaporation from Pan Class A come to 40, 60, 80 and 100 mm. Results illustrated that drought stress significantly increased activities of catalase and peroxidase and also treatment with salicylic acid significantly increased activities of catalase and peroxidase. In addition, treatment with salicylic acid enhances drought tolerance in Zea mays L. plant (Var-Sc.704) with increasing activities of antioxidant enzymes.

Keywords: catalase, corn, salicylic acid, water deficits stress, cumulative evaporation, Pan Class A

Procedia PDF Downloads 457
24330 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
24329 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 171
24328 An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, David Phipps, Ortoneda Pedrola

Abstract:

Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C).

Keywords: electrocoagulation, flow column, treatment, water temperature

Procedia PDF Downloads 430
24327 Stubble and Senesced Leaves Are the Primary Sites of Ice Nucleation Activity in Wheat

Authors: Amanuel Bekuma, Rebecca Swift, Sarah Jackson, Ben Biddulph

Abstract:

Economic loss to frost damage is increasing over the past years in the Western Australian Wheatbelt. Agronomic, genetic, and climatic works have still found a weak correlation between temperature and frost damage. One possibility that has not been explored within the Australian cropping system is whether ice nucleation active bacteria (INB) either present in situ on crop residue or introduced by rainfall could be responsible for the increased sensitivity of cereal plants to frost at different stages of development. This study investigated upper and lower leaf canopy, stubble, and soil as a potential site of ice nucleation activity (INA) and tracked the changes in INA during the plant development. We found that older leaves of wheat are the primary sites of ice nucleation (-4.7 to -6.3°C) followed by stubble (-5.7 to -6.7°C) which increases the risk of frost damage during heading and flowering (the most susceptible stages). However, healthy and green upper canopy leaves (flag and flag-2) and the soil have lower INA (< -11°C) during the frost-sensitive stage of wheat. We anticipate the higher INA on the stubble and older leaves to be due to the presence of biologically active ice-nucleating bacteria (INB), known to cause frost injury to sensitive plants at -5°C. Stubble retained or applied during the growing season further exacerbates additional frost risk by potentially increasing the INB load. The implications of the result for stubble and frost risk management in a frost-prone landscape will be discussed.

Keywords: frost, ice-nucleation-activity, stubble, wheat

Procedia PDF Downloads 135
24326 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District

Authors: Shivangi Somvanshi

Abstract:

Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.

Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar

Procedia PDF Downloads 287
24325 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
24324 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 74
24323 Quantitative Analysis of Presence, Consciousness, Subconsciousness, and Unconsciousness

Authors: Hooshmand Kalayeh

Abstract:

The human brain consists of reptilian, mammalian, and thinking brain. And mind consists of conscious, subconscious, and unconscious parallel neural-net programs. The primary objective of this paper is to propose a methodology for quantitative analysis of neural-nets associated with these mental activities in the neocortex. The secondary objective of this paper is to suggest a methodology for quantitative analysis of presence; the proposed methodologies can be used as a first-step to measure, monitor, and understand consciousness and presence. This methodology is based on Neural-Networks (NN), number of neuron in each NN associated with consciousness, subconsciouness, and unconsciousness, and number of neurons in neocortex. It is assumed that the number of neurons in each NN is correlated with the associated area and volume. Therefore, online and offline visualization techniques can be used to identify these neural-networks, and online and offline measurement methods can be used to measure areas and volumes associated with these NNs. So, instead of the number of neurons in each NN, the associated area or volume also can be used in the proposed methodology. This quantitative analysis and associated online and offline measurements and visualizations of different Neural-Networks enable us to rewire the connections in our brain for a more balanced living.

Keywords: brain, mind, consciousness, presence, sub-consciousness, unconsciousness, skills, concentrations, attention

Procedia PDF Downloads 314
24322 Effect of Temperature on Investigation of Index Properties of Red Clay Soil

Authors: Birhanu Kassa

Abstract:

The knowledge of temperature effect on index properties and, thus, the understanding of its behavior may be essential for a complete understanding of the various cases of Geotechnical Engineering problems and for conducting meaningful practical research, analysis, and design in tropical regions, such as the Ethiopian environment. The scarcity of the proper geotechnical information on the subsoil makes foundation and engineering works risk able, difficult, and sometimes hazardous. Seasonal variations, environmental effects, terrain challenges, and temperature effects all affect the quality of soil. Simada is a city which is found in south Gondar and it is developing rapidly both in horizontal and vertical construction. Rapid urbanization in the city area has led to an increased interest in the basic properties of soils that are present within the city area. There has been no previous research that looks into the effect of temperature on the investigation of clay soil index qualities in Simada. This work focuses mainly on investigating the Index and some other properties of soil in Simada Town with varying temperatures. To explore the influence of temperature change, samples were collected from various regions of the city, and routine laboratory tests were performed on the collected samples at various temperatures. Disturbed samples were taken at intervals where an average depth of 1.5-2m depths below natural ground level. The standard laboratory tests performed on all twenty-four soil samples were the water content, gradation analysis, Atterberg limits, specific gravity, and compaction test. All specimens were tested at different temperatures (25°C, 35 °C, 45 °C, 65 °C,75 and 105 °C). The variation of the plasticity characteristics of the soils has been determined based on the temperature variation. From the test result, we can conclude that temperature has a significant effect on the index properties of clay soil, in our case, red clay soil.

Keywords: airdried, oven dried, soils index properties, compaction test

Procedia PDF Downloads 36
24321 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
24320 Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels

Authors: Shahram Baghban Cirus, Parisa Alizadeh Oskuie

Abstract:

In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization.

Keywords: green bean, plant growth, VA mycorrhiza, water-stress

Procedia PDF Downloads 354
24319 Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery

Authors: Zhiyuan Jia, Xiuxiu Sun, Yong Chen, Liu Hai, Shuangqing Li

Abstract:

The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%.

Keywords: cooling water, exhaust gas, extended range engine, steam injection, waste heat recovery

Procedia PDF Downloads 184
24318 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 455
24317 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 351
24316 Discrimination between Defective and Non-Defective Coffee Beans Using a Laser Prism Spectrometer

Authors: A. Belay, B. Kebede

Abstract:

The concentration- and temperature-dependent refractive indices of solutions extracted from defective and non-defective coffee beans have been investigated using a He–Ne laser. The refractive index has a linear relationship with the presumed concentration of the coffee solutions in the range of 0.5–3%. Higher and lower values of refractive index were obtained for immature and non-defective coffee beans, respectively. The Refractive index of bean extracts can be successfully used to separate defective from non-defective beans.

Keywords: coffee extract, refractive index, temperature dependence

Procedia PDF Downloads 150
24315 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 493
24314 The Effect of Shading on Cooling Tower Performance

Authors: Eitidal Albassam

Abstract:

Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature.

Keywords: dry-bulb temperature, entering air, water consumption, water vaporization

Procedia PDF Downloads 142
24313 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India

Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat

Abstract:

The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.

Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage

Procedia PDF Downloads 120
24312 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model

Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh

Abstract:

A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.

Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety

Procedia PDF Downloads 324
24311 Climate Change and Its Impact on Water Security and Health in Coastal Community: A Gender Outlook

Authors: Soorya Vennila

Abstract:

The present study answers the questions; how does climate change affect the water security in drought prone Ramanathapuram district? and what has water insecurity done to the health of the coastal community? The study area chosen is Devipattinam in Ramanathapuram district. Climate change evidentially wreaked havoc on the community with saltwater intrusion, water quality degradation, water scarcity and its eventual economic, social like power inequality within family and community and health hazards. The climatological data such as rainfall, minimum temperature and maximum temperature were statistically analyzed for trend using Mann-Kendall test. The test was conducted for 14 years (1989-2002) of rainfall data, maximum and minimum temperature and the data were statistically analyzed. At the outset, the water quality samples were collected from Devipattinam to test its physical and chemical parameters and their spatial variation. The results were derived as shown in ARC GIS. Using the water quality test water quality index were framed. And finally, key Informant interview, questionnaire were conducted to capture the gender perception and problem. The data collected were thereafter interpreted using SPSS software for recommendations and suggestions to overcome water scarcity and health problems.

Keywords: health, watersecurity, water quality, climate change

Procedia PDF Downloads 78
24310 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
24309 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 68
24308 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 353
24307 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
24306 Water Temperature on Early Age Concrete Property

Authors: Tesfaye Sisay Dessalegn

Abstract:

The long-term performance of concrete structures is affected by the properties and behavior of concrete at an early age. However, the fundamental mechanisms affecting the early-age behavior of concrete have not yet been fully studied. The effect of water temperature on concrete is not sufficiently studied, and at the same time, the majority of studies focused on the effect of mixing water temperature on the workability and mechanical properties of concrete. However, to the best of the authors' knowledge, the effect of mixing water temperatures on plastic shrinkage cracking of concrete has not been studied yet.

Keywords: water temperature, early age concrete strength, mechanical properties of concrete, strength

Procedia PDF Downloads 57