Search results for: aerodynamic angles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 777

Search results for: aerodynamic angles

387 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 320
386 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 197
385 Performance Comparison of Space-Time Block and Trellis Codes under Rayleigh Channels

Authors: Jing Qingfeng, Wu Jiajia

Abstract:

Due to the crowded orbits and shortage of frequency resources, utilizing of MIMO technology to improve spectrum efficiency and increase the capacity has become a necessary trend of broadband satellite communication. We analyze the main influenced factors and compare the BER performance of space-time block code (STBC) scheme and space-time trellis code (STTC) scheme. This paper emphatically studies the bit error rate (BER) performance of STTC and STBC under Rayleigh channel. The main emphasis is placed on the effects of the factors, such as terminal environment and elevation angles, on the BER performance of STBC and STTC schemes. Simulation results indicate that performance of STTC under Rayleigh channel is obviously improved with the increasing of transmitting and receiving antennas numbers, but the encoder state has little impact on the performance. Under Rayleigh channel, performance of Alamouti code is better than that of STTC.

Keywords: MIMO, space time block code (STBC), space time trellis code (STTC), Rayleigh channel

Procedia PDF Downloads 325
384 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 303
383 Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation

Authors: Youcef Faci, Ahmed Mebtouche, Badredine Maalem

Abstract:

n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen.

Keywords: tensile test, damage, acoustic emission, digital image correlation

Procedia PDF Downloads 47
382 Feasibility of Deployable Encasing for a CVDR (Cockpit Voice and Data Recorder) in Commercial Aircraft

Authors: Vishnu Nair, Rohan Kapoor

Abstract:

Recent commercial aircraft crashes demand a paradigm shift in how the CVDRs are located and recovered, particularly if the aircraft crashes in the sea. CVDR (Cockpit Voice and Data Recorder) is most vital component out of the entire wreckage that can be obtained in order to investigate the sequence of events leading to the crash. It has been a taxing and exorbitantly expensive process locating and retrieving the same in the massive water bodies as it was seen in the air crashes in the recent past, taking the unfortunate Malaysia airlines MH-370 crash into account. The study aims to provide an aid to the persisting problem by improving the buoyant as-well-as the aerodynamic properties of the proposed CVDR encasing. Alongside this the placement of the deployable CVDR on the surface of the aircraft and floatability in case of water submersion are key factors which are taken into consideration for a better resolution to the problem. All of which results into the Deployable-CVDR emerging to the surface of the water-body. Also the whole system is designed such that it can be seamlessly integrated with the current crop of commercial aircraft. The work is supported by carrying out a computational study with the help Ansys-Fluent combination.

Keywords: encasing, buoyancy, deployable CVDR, floatability, water submersion

Procedia PDF Downloads 270
381 Investigation of the Trunk Inclination Positioning Angle on Swallowing and Respiratory Function

Authors: Hsin-Yi Kathy Cheng, Yan-Ying JU, Wann-Yun Shieh, Chin-Man Wang

Abstract:

Although the coordination of swallowing and respiration has been discussed widely, the influence of the positioning angle on swallowing and respiration during feeding has rarely been investigated. This study aimed to investigate the timing and coordination of swallowing and respiration in different seat inclination angles, with liquid and bolus, to provide suggestions and guidelines for the design and develop a feedback-controlled seat angle adjustment device for the back-adjustable wheelchair. Twenty-six participants aged between 15-30 years old without any signs of swallowing difficulty were included. The combination of seat inclinations and food types was randomly assigned, with three repetitions in each combination. The trunk inclination angle was adjusted by a commercialized positioning wheelchair. A total of 36 swallows were done, with at least 30 seconds of rest between each swallow. We used a self-developed wearable device to measure the submandibular muscle surface EMG, the movement of the thyroid cartilage, and the respiratory status of the nasal cavity. Our program auto-analyzed the onset and offset of duration, and the excursion and strength of thyroid cartilage when it was moving, coordination between breathing and swallowing were also included. Variables measured include the EMG duration (DsEMG), swallowing apnea duration (SAD), total excursion time (TET), duration of 2nd deflection, FSR amplitude, Onset latency, DsEMG onset, DsEMG offset, FSR onset, and FSR offset. These measurements were done in four-seat inclination angles (5。, 15。, 30。, 45。) and three food contents (1ml water, 10ml water, and 5ml pudding bolus) for each subject. The data collected between different contents were compared. Descriptive statistics were used to describe the basic features of the data. Repeated measure ANOVAs were used to analyze the differences for the dependent variables in different seat inclination and food content combinations. The results indicated significant differences in seat inclination, mostly between 5。 and 45。, in all variables except FSR amplitude. It also indicated significant differences in food contents almost among all variables. Significant interactions between seat inclination and food contents were only found in FSR offsets. The same protocol will be applied to participants with disabilities. The results of this study would serve as clinical guidance for proper feeding positions with different food contents. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development. In summary, the current results indicated that it is easier for a subject to lean backward during swallowing than when sitting upright and swallowing water is easier than swallowing pudding. The results of this study would serve as the clinical guidance for proper feeding position (such as wheelchair back angle adjustment) with different food contents. The same protocol can be applied to elderly participants or participants with physical disabilities. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development.

Keywords: swallowing, positioning, assistive device, disability

Procedia PDF Downloads 48
380 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling

Authors: A. Falsafi, M. Dadkhah, S. Shahidi

Abstract:

The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.

Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack

Procedia PDF Downloads 109
379 Investigation of TEC Using YOUTHSAT RaBIT Payload Data for Low Latitude Regions

Authors: Perumalla Naveen Kumar

Abstract:

Global Positioning System (GPS) is used for civilian and military user positioning applications. The accuracy of GPS is degrading mainly because of ionospheric error. It is very important to analyze the effects of ionosphere on the performance of satellite systems especially in the low latitude regions. These variations depend on the Total Electron Content (TEC) in the ionosphere. To investigate the variations in the atmosphere, a mini satellite known as YOUTHSAT is launched by India. This is the outcome of the collaboration between India and USSR. One of the YOUTHSAT Indian payload is RaBIT (Radio Beacon for Ionospheric Tomography). In this paper, YOUTHSAT RaBIT payload data for the three typical days of 2011 are considered. The analysis is carried out for four Indian stations. The variations of Slant TEC, elevation angle and azimuth angles are analyzed with respect to local time. The obtained results are encouraging.

Keywords: Global Positioning System (GPS), Total Electron Content (TEC), YOUTHSAT, Radio Beacon for Ionospheric Tomography (RaBIT)

Procedia PDF Downloads 358
378 Aerodynamic Design of Axisymmetric Supersonic Nozzle Used by an Optimization Algorithm

Authors: Mohammad Mojtahedpoor

Abstract:

In this paper, it has been studied the method of optimal design of the supersonic nozzle. It could make viscous axisymmetric nozzles that the quality of their outlet flow is quite desired. In this method, it is optimized the divergent nozzle, at first. The initial divergent nozzle contour is designed through the method of characteristics and adding a suitable boundary layer to the inviscid contour. After that, it is made a proper grid and then simulated flow by the numerical solution and AUSM+ method by using the operation boundary condition. At the end, solution outputs are investigated and optimized. The numerical method has been validated with experimental results. Also, in order to evaluate the effectiveness of the present method, the nozzles compared with the previous studies. The comparisons show that the nozzles obtained through this method are sufficiently better in some conditions, such as the flow uniformity, size of the boundary layer, and obtained an axial length of the nozzle. Designing the convergent nozzle part affects by flow uniformity through changing its axial length and input diameter. The results show that increasing the length of the convergent part improves the output flow uniformity.

Keywords: nozzle, supersonic, optimization, characteristic method, CFD

Procedia PDF Downloads 162
377 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur

Procedia PDF Downloads 184
376 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers

Authors: Margarita Dufresne

Abstract:

This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.

Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel

Procedia PDF Downloads 29
375 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 364
374 Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns

Authors: Ting-Ting Wen, H. C. Lin

Abstract:

This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device.

Keywords: triangular microlens, corrugation patterns, nano-line patterns, PLED device, UV imprinting technology, microstamping

Procedia PDF Downloads 452
373 Numerical Investigations on the Coanda Effect

Authors: Florin Frunzulica, Alexandru Dumitrache, Octavian Preotu

Abstract:

The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results.

Keywords: blowing jet, CFD, Coanda effect, circulation control

Procedia PDF Downloads 323
372 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 126
371 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 323
370 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 439
369 Microgreenspace Regeneration in an Inclusive Perspective

Authors: Li Shiyue

Abstract:

In an urban built environment, urban green space is scarce, especially around old residential areas. Due to the innate design deficiency and the non-core location of these areas, they lack green space, and the recreational opportunities of the surrounding residents are not guaranteed. Micro greenspace becomes a "patch" to compensate for the urban function. To realize the renewal and transformation of micro greenspace, and make it meet the use needs of most groups, this paper introduces the concept of inclusive design. Based on relevant research at home and abroad, this paper discusses the connotation and current situation of micro greenspace. Combining with the realistic conditions of China, this paper thinks about the planning path of inclusive renewal from the aspects of selecting micro greenspace transformation potential points and exploring the key points of site renewal. Among them, the key points of site renewal are explored from five angles: land guarantee, systematic coordination, refined design, and shared space creation, to provide useful references for related research and practice.

Keywords: inclusive design, micro greenspace, old city area, space renewal

Procedia PDF Downloads 36
368 Study of Effect of Steering Column Orientation and Operator Platform Position on the Hand Vibration in Compactors

Authors: Sunil Bandaru, Suresh Yv, Srinivas Vanapalli

Abstract:

Heavy machinery especially compactors has more vibrations induced from the compactor mechanism than the engines. Since the operator’s comfort is most important in any of the machines, this paper shows interest in studying the vibrations on the steering wheel for a double drum compactor. As there are no standard procedures available for testing vibrations on the steering wheel of double drum compactors, this paper tries to evaluate the vibrations on the steering wheel by considering most of the possibilities. In addition to the feasibility for the operator to adjust the steering wheel tilt as in the case of automotive, there is an option for the operator to change the orientation of the operator platform for the complete view of the road’s edge on both the ends of the front and rear drums. When the orientation is either +/-180°, the operator will be closer to the compactor mechanism; also there is a possibility for the shuffle in the modes with respect to the operator. Hence it is mandatory to evaluate the vibrations levels in both cases. This paper attempts to evaluate the vibrations on the steering wheel by considering the two operator platform positions and three steering wheel tilting angles.

Keywords: FEA, CAE, steering column, steering column orientation position

Procedia PDF Downloads 196
367 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs

Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu

Abstract:

Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.

Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy

Procedia PDF Downloads 360
366 Influence of Bra Band Tension and Underwire Angles on Breast Motion

Authors: Cheuk Wing Lee, Kit Lun Yick, Sun Pui Ng, Joanne Yip

Abstract:

Daily activities and exercise may result in large displacements of the breasts, which lead to breast pain and discomfort. Therefore, a proper bra design and fit can help to control excessive breast motion to prevent the over-stretching of the connective tissues. Nevertheless, bra fit problems, such as excessively high tension of the shoulder straps and a tight underband could have substantially negative effects on the wear comfort and health of the wearer. The purpose of this study is to, therefore, examine the effects of bra band tension on breast displacement. Usually, human wear trials are carried out, but there are inconsistencies during testing. Therefore, a soft manikin torso is used to examine breast displacement at walking speeds of 2.30 km/h and 4.08 km/h. The breast displacement itself is determined by using a VICON motion capture system. The 3D geometric changes of the underwire bra band tension and the corresponding control of breast movement are also analyzed by using a 3D handheld scanner along with Rapidform software. The results indicate that an appropriate bra band tension can help to reduce breast displacement and provide a comfortable angle for the underwire. The findings can be used by designers and bra engineers as a reference source to advance bra design and development.

Keywords: bra band, bra features, breast displacement, underwire angle

Procedia PDF Downloads 228
365 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 385
364 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles

Authors: Nirmal Kant Singh, Anshuman Pratap Singh

Abstract:

In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.

Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle

Procedia PDF Downloads 619
363 Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling

Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón

Abstract:

Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.

Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD

Procedia PDF Downloads 461
362 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model

Procedia PDF Downloads 321
361 Designing Sustainable Building Based on Iranian's Windmills

Authors: Negar Sartipzadeh

Abstract:

Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.

Keywords: renewable energy, sustainable building, windmill, Iranian architecture

Procedia PDF Downloads 395
360 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation

Authors: Barenten Suciu

Abstract:

In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.

Keywords: displacement-type excitation, inerter, load-type excitation, one degree of freedom vibration, parallel connection

Procedia PDF Downloads 183
359 Execution of Optimization Algorithm in Cascaded H-Bridge Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the harmonic elimination of Cascaded H-Bridge Multi-Level Inverter by using Selective Harmonic Elimination-Pulse Width Modulation method programmed with Particle Swarm Optimization algorithm. PSO method determine proficiently the required switching angles to eliminate low order harmonics up to the 11th order from the inverter output voltage waveform while keeping the magnitude of the fundamental harmonics at the desired value. Results demonstrate that the proposed method does efficiently eliminate a great number of specific harmonics and the output voltage is resulted in minimum Total Harmonic Distortion. The results shown that the PSO algorithm attain successfully to the global solution faster than other algorithms.

Keywords: multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Particle Swarm Optimization (PSO), Total Harmonic Distortion (THD)

Procedia PDF Downloads 580
358 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: end clamp effect, full-size timber test, shear properties, torsion test, wood engineering

Procedia PDF Downloads 261